Valokeilatehtävä

Anonyymi

Olkoon d>0. Funktiolle f(x) piirretään pisteisiin x ja x-d tangentit. Millä x:n arvolla niiden välinen kulma on suurimmillaan? Kuvio: https://aijaa.com/y5YDrs

Tuossa esimerkkikuvassa oli f(x) = xe^x, mutta tehtäväksi voidaan asettaa

a) f(x) = e^x
b) f(x) = 1/3*x^3 x/5

Asetetaan b-kohdassa d=1.

Toinen tehtävä: Kun p(x) on toisen asteen polynomi ja sille piirretään kolmeen eri pisteeseen tangentit, niin näiden muodostama kolmio on alaltaan vakio. Todista tämä väite oikeaksi tai vääräksi.

11

76

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      a) x=d/2

    • Anonyymi

      2) Valitaan yksi piste parabelin huipusta ja kaksi muuta pistettä symmetrisesti se vierestä. Saadaan tangenteista kolmio. Kun viereisiä pisteteitä siirretään siiretään lähemmäksi huippua niin tangenttien muodostaman kolmion ala menee nollaan. Varmaan tuon voi jollain laskuesimerkilläkin osoittaa.

      • Anonyymi

        Ai niin joo, tokaan tehtävään semmoinen tarkennus, että siinä piti olla ne kahden muun pisteen x-koordinaattien etäisyydet keskimmäisestä annetut ja sitten ala on vakio (?) kun keskimmäistä liikutellaan.

        Siis olkoon eräs piste (x0, p(x0) ja kaksi muuta (x0-d1, p(x0-d1)) sekä x0 d2, p(x0 d2)), missä d1 ja d2 ovat kiinteät positiiviset vakiot.


      • Anonyymi
        Anonyymi kirjoitti:

        Ai niin joo, tokaan tehtävään semmoinen tarkennus, että siinä piti olla ne kahden muun pisteen x-koordinaattien etäisyydet keskimmäisestä annetut ja sitten ala on vakio (?) kun keskimmäistä liikutellaan.

        Siis olkoon eräs piste (x0, p(x0) ja kaksi muuta (x0-d1, p(x0-d1)) sekä x0 d2, p(x0 d2)), missä d1 ja d2 ovat kiinteät positiiviset vakiot.

        Tuntuisi mutulla siltä, että ei ole se ala vakio, koska kaarevuussäde ei ole vakio. Ympyrällä olisi..


      • Anonyymi
        Anonyymi kirjoitti:

        Tuntuisi mutulla siltä, että ei ole se ala vakio, koska kaarevuussäde ei ole vakio. Ympyrällä olisi..

        Minä sain, että ala olisi aina 1/4*|d1|*|d2|*|d1-d2|, kun pisteiden x-koordinaatit ovat x0, x0 d1 ja x0 d2 (eli molemmissa lisätään dj, helpompi tehdä samalla tavalla).

        https://www.desmos.com/calculator/6keklruk95

        Tein laskun Sagella, koodi on tuolla mukana. Pidin kaikki parametrit symboolisina ja ratkaisin leikkauspisteet ja sitten laskin kolmion alan determinanttina niinkuin se nyt menee tai shoelace formulalla: https://en.wikipedia.org/wiki/Shoelace_formula


      • Anonyymi
        Anonyymi kirjoitti:

        Minä sain, että ala olisi aina 1/4*|d1|*|d2|*|d1-d2|, kun pisteiden x-koordinaatit ovat x0, x0 d1 ja x0 d2 (eli molemmissa lisätään dj, helpompi tehdä samalla tavalla).

        https://www.desmos.com/calculator/6keklruk95

        Tein laskun Sagella, koodi on tuolla mukana. Pidin kaikki parametrit symboolisina ja ratkaisin leikkauspisteet ja sitten laskin kolmion alan determinanttina niinkuin se nyt menee tai shoelace formulalla: https://en.wikipedia.org/wiki/Shoelace_formula

        Ai niin paitsi p:n johtavan kertoimen oletin jostain syystä ykköseksi, mutta näköjään alan kaava pitää vielä kertoa sen itseisarvolla, jos näin ei ole.

        Koodissa a mukana: https://www.desmos.com/calculator/4ecpkk0xav


    • Anonyymi

      Toinen tehtävä: Kyllä se väite on oikea tai väärä.

    • Anonyymi

      f:n tangentin kulmakerroin pisteessä x on f'(x).
      a)f(x) = e^x
      F(x) = arctan(e^x) - arctan(e^(x-d))
      On minimoitava F.
      Saadaan yhtälö (1 - e^d) (1 - e^(2x-d)) = 0 josta x = d/2.
      Oli d > 0 joten 1 - e^(-d) > 0
      1 - e^(2x-d) < 0 kun x > d/2 ja 1 - e^(2x-d) > 0 kun x < d/2
      joten kyseessä on maksimi.

      b) f(x) = 1/3 x^3 x/5, d = 1.
      F(x) = arctan(x^2 1/5) - arctan(x^2 - 2x 6/5)
      d/dx(arctan(x)) =1/(1 x^2)
      Siitä vaan ratkomaan. Kyllä W-A laskee!

      • Anonyymi

        Pitin sanomani: on maksimoitava F. Ja senhän teinkin lähtien siitä että F'(x) = 0.
        Vielä paremmin: etsitään F:n ääriarvot ja niistä maksimi jos löytyy.


      • Anonyymi

      • Anonyymi
        Anonyymi kirjoitti:

        Joo, b:stä tuli minun laskun mukaan x = 1/2 sqrt(13/5)/2 = 1,306. Tai W-A:llahan minäkin taisin sen yhtälön sitten ratkaista :D

        https://www.desmos.com/calculator/dewvfsmm3v

        W-A antaa tosiaan reaalijuuret x1 = 1/2 - sqrt(13/5)/2 = - 0,3062 ja x2 = 1/2 sqrt(13/5)/2 = 1,3062 yhtälölle F'(x) = 0.

        Pistettä x1 ohitettaessa F:n merkki muuttuu : - -> , kyseessä minimi.
        Pistettä x2 ihitettaessa F:n merkki muuttuu : -> - , kyseessä maksimi.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Epäily: Oppilas puukotti kolmea Pirkkalan koululla

      Tämänhetkisen tiedon mukaan ainakin kolme oppilasta on loukkaantunut puukotuksessa Pirkkalan Vähäjärven koululla. Myös e
      Pirkanmaa
      301
      7654
    2. Jos yhdistät nimikirjaimet

      Jos yhdistät sinun ja kaivattusi ensimmäisten nimien alkukirjaimet mitkä nimikirjaimet tulee? Sinun ensin ja sitten häne
      Ikävä
      85
      5979
    3. Jos olisit täällä

      Tosin en tiiä miks oisit. (Ja hävettää muutenkin kun ei muka muulla tavoin osaa kertoa tätäkään) Jos jollain pienellä
      Ihastuminen
      167
      3538
    4. Kyllä se taitaa olla nyt näin

      Minusta tuntuu et joku lyö nyt kapuloita rattaisiin että meidän välit menisi lopullisesti. Sinä halusit että tämä menee
      Ikävä
      32
      1997
    5. Pirkkalan koulussa puukotus, oppilas puukotti kolmea

      Ilmeisesti tyttöjä ollut kohteena.
      Maailman menoa
      192
      1875
    6. Odotan että sanot

      Sitten siinä että haluaisit vielä jutella kahdestaan kanssani ja sitten kerrot hellästi että sinulla on ollut vaikea san
      Ikävä
      19
      1698
    7. Paljon niitä puheita

      susta liikkuu. 🤮
      Tunteet
      36
      1579
    8. Olet kiva

      Olet kiva :)
      Ikävä
      44
      1484
    9. Miksi haluat alentaa muita?

      Luulin sinua niin erilaiseksi, poikkeavan hyväksi, olin väärässä.
      Ikävä
      22
      1431
    10. Heih! Vieläkö ehtii laittaa auringonkukat kasvamaan?

      Kerkeekö auringonkukat kukkimaan, kun upottaa auringonkukan siemenet kävelyreittien varrella multiin? Vai onko jo ihan
      Maailman menoa
      65
      1398
    Aihe