Tälläisiin kahteen pähkinään kaivataan ohjetta tai vinkkiä.
1) Määritä vakiot a ja b siten että funktio
f(x) = { x-a^2 , kun x ≤ a
{ax^2 b, kun x>a
on kaikkialla jatkuva ja derivoituva.
2) Määritä sellaiset vakioiden a ja b arvot, että funktio f(x) on jatkuva ja derivoituva koko reaalilukujen joukossa
f(x)= { x^2 b, kun x ≤ a
{ x, , kun x > a
Kiitos kaikille auttajille !!
Funktion jatkuvuus (apua kaivataan)
9
466
Vastaukset
- Anonyymi
Noiden funktioiden arvot pitää olla tismalleen samat tuossa pisteessä missä toinen alkaa ja toinen loppuu.
- Anonyymi
Ja kohdassa 2 myös derivaattojen pitää olla samat siinä pisteessä.
- Anonyymi
Anonyymi kirjoitti:
Ja kohdassa 2 myös derivaattojen pitää olla samat siinä pisteessä.
Ei minusta täydy.
- Anonyymi
Anonyymi kirjoitti:
Ei minusta täydy.
Eipäs tarvitsekaan. Ihan omissa päissäni luin tehtävänannon väärin, että sen pitäisi olla jatkuvasti derivoituva.
- Anonyymi
Anonyymi kirjoitti:
Eipäs tarvitsekaan. Ihan omissa päissäni luin tehtävänannon väärin, että sen pitäisi olla jatkuvasti derivoituva.
Mutta kyllä niiden tässä täytyy, koska muuten funktio ei ole derivoituva pisteessä x=a.
Kun erotusosamäärässä lähestytään vasemmalta, saadaan ekan palan derivaatta pisteessä a ja kun oikealta, niin saadaan tokan palan derivaatta pisteessä a. Jotta raja-arvo siis olisi olemassa, täytyy näiden olla yhtä suuret. - Anonyymi
Anonyymi kirjoitti:
Mutta kyllä niiden tässä täytyy, koska muuten funktio ei ole derivoituva pisteessä x=a.
Kun erotusosamäärässä lähestytään vasemmalta, saadaan ekan palan derivaatta pisteessä a ja kun oikealta, niin saadaan tokan palan derivaatta pisteessä a. Jotta raja-arvo siis olisi olemassa, täytyy näiden olla yhtä suuret.Derivaatallahan ei voi hyppyepäjatkuvuuksia ikinä ollakaan:
https://math.stackexchange.com/questions/563771/prove-that-if-a-function-f-has-a-jump-at-an-interior-point-of-the-interval-a
Ja tuossa tapauksessa derivaatan mahdollinen epäjatkuvuus olisi hyppyepäjatkuvuus, koska toispuoleiset raja-arvot on olemassa, koska palat ovat jatkuvasti derivoituvia.
- Anonyymi
Pisteessä x = a täytyy olla a - a^2 = a^3 b
ja 1 = 2 a^2 josta a = /- 1/sqrt(2)
Kun a = 1/sqrt(2) niin b = -1/2^(3/2)- 1/2 1/sqrt(2)
Kun a = - 1/sqrt(2) niin b = 1/2^(3/2) - 1/2 - 1/sqrt(1/2)
Tark. f(1/sqrt(2) = 1/sqrt(2) - 1/2 = 1/2^3/2 - 1/2^/3/2) - 1/2 1/sqrt(2)
f'(1/sqrt(2) ) = 1 = 2* 1/sqrt(2) * 1/sqrt(2)= 1
f(- 1/sqrt(2)) = - 1/sqrt(2) - 1/2 = - 1/sqrt(2) * 1/2 1/2^(3/2) - 1/2 - 1/sqrt(2)
f'(- 1/sqrt(2)) = 1 = - 2 * 1/sqrt(2) *( - 1/sqrt(2))
OK
Pisteessä a täytyy olla a^2 b = a
ja 2 a = 1 joten a =1/2 ja b = 1/2 - 1/4 = 1/4
Tark.
f(1/2) = 1/4 1/4 = 1/2 = 1/2
f'(1/2) = 2* 1/2 = 1 = 1
OK- Anonyymi
Jännä miten porukka kirjoittaa pelkän vastauksen tänne. Mikä idea tuossakin aina on.
- Anonyymi
Anonyymi kirjoitti:
Jännä miten porukka kirjoittaa pelkän vastauksen tänne. Mikä idea tuossakin aina on.
Jos viittaat tuolla kommenttiin / 09:21 niin et tainnut ymmärtää sitä. Kyllä siinä on nimenomaan laskettu a:n ja b:n arvot molemmissa tehtävissä. Laskut on jopa tarkastettu.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Epäily: Oppilas puukotti kolmea Pirkkalan koululla
Tämänhetkisen tiedon mukaan ainakin kolme oppilasta on loukkaantunut puukotuksessa Pirkkalan Vähäjärven koululla. Myös e3017654Jos yhdistät nimikirjaimet
Jos yhdistät sinun ja kaivattusi ensimmäisten nimien alkukirjaimet mitkä nimikirjaimet tulee? Sinun ensin ja sitten häne855979Jos olisit täällä
Tosin en tiiä miks oisit. (Ja hävettää muutenkin kun ei muka muulla tavoin osaa kertoa tätäkään) Jos jollain pienellä1673538Kyllä se taitaa olla nyt näin
Minusta tuntuu et joku lyö nyt kapuloita rattaisiin että meidän välit menisi lopullisesti. Sinä halusit että tämä menee321997Pirkkalan koulussa puukotus, oppilas puukotti kolmea
Ilmeisesti tyttöjä ollut kohteena.1921875Odotan että sanot
Sitten siinä että haluaisit vielä jutella kahdestaan kanssani ja sitten kerrot hellästi että sinulla on ollut vaikea san191698- 361579
- 441484
- 221431
Heih! Vieläkö ehtii laittaa auringonkukat kasvamaan?
Kerkeekö auringonkukat kukkimaan, kun upottaa auringonkukan siemenet kävelyreittien varrella multiin? Vai onko jo ihan651398