Eristetyt alkuluvut

Kaikkihan tietävät että alkuluvuissa on mielivaltaisen suuria hyppyjä (luvut n! 2, n! 3, ..., n! n ovat kaikki yhdistettyjä lukuja).

Mutta entäpä jos halutaan että alkuluvusta hyppy edelliseen ja seuraavaan ovat molemmat mielivaltaisen suuria? Eli ts. jos on annettu n, niin löytyykö aina alkuluku p, siten että luvut p-n, ..., p-1, p 1, ..., p n ovat yhdistettyjä lukuja?

2

160

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Löytyy, Perustelu tosin vaatii melko pitkälle lukuteorian tuntemusta. Alkulukujen keskimääräinen esiintymistiheys harvenee lukujen kasvaessa, joska tulos seuraa.

      • Kuinka se nähdään pelkän tiheyden avulla? Nehän voisi olla siten että kaksi on aina melko lähekkäin ja sitten taas suuri hyppy, jonka jälkeen taas kaksi lähekkäin, jne.

        Tässä eräs todistus, joka mukailee tuota "yhden hypyn todistusta", mutta käyttää sekin aika järeää lausetta, nimittäin Dirichlet'n lausetta https://en.wikipedia.org/wiki/Dirichlet's_theorem_on_arithmetic_progressions , jonka mukaan muotoa a md, m ∈ N olevia alkulukuja on äärettömän monta, kun syt(a, d)=1.

        Olkoon haluttu eristysmatka n annettu. Valitaan jokin alkuluku q>n 2.
        Merkitään
        M = 2*3*...*(q-1) * (q 1) * ... * (2q-1)
        (Eli samoin kuin yhdelle hypylle otettiin n!, niin nyt q:n molemmin puolin kerrotaan q-1:n matkalta kaikki luvut keskenään.)
        Nyt, koska q on alkuluku eikä jaa mitään tulon termeistä, niin syt(M, q) = 1.
        Valitaan sitten (Dirichlet'n lauseen takaama) alkuluku p, jolle pätee p = M*t q, jollekin t>0.
        Nyt p on haluttu eristetty alkuluku, sillä jokaiselle k = 1, 2, ..., n

        p - k = M*t q-k, joka on jaollinen q-k:lla, sillä (q-k) | M
        ja
        p k = M*t q k, joka on jaollinen q k:lla, sillä (q k) | M.

        Huomioita:

        Itse asiassa yllä (kuten yhden hypyn tapauksessakaan) ei olisi tarvinnut ottaa M:ksi koko tuloa, vaan termien pyj olisi riittänyt.

        Dirichlet'n lauseen äärrettömyys-osaa, saati tasa-jakauteneisuutta ei olisi tarvittu. Riittää, että löytyy yksi alkuluku p muotoa p = M*t q, t>=1. Mutta onko tälle asialle olemassa helpompaa todistusta menemättä Dirichlet'n lauseen kautta? Ainakin tässä videossa: https://www.youtube.com/watch?v=zG185Ef1gPM&list=PLU3f-I7n3Bhxge578PJZptOLPUlxs3RBP&index=9&t=473 vihjataan, että se ei aivan triviaalia olisi.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. En voi jutella kanssasi

      tietenkään, mutta täällä voin sanoa sinulle, että se sinun hiljaisuutesi ja herkkyytesi eivät ole heikkoutta. Ne ovat ih
      Tunteet
      37
      4955
    2. Trump ja Vance murskasivat ja nolasivat Zelenskyn tiedotusvälineiden edessä Valkoisessa talossa.

      Jopa oli uskomaton tilaisuus Valkoisessa talossa. Zelensky jäi täydelliseksi lehdellä soittelijaksi suhteessa Trumpiin j
      Maailman menoa
      505
      1587
    3. Kokoomus haluaa hoitaa flussat yksityisellä, jotta säästettäisiin rahaa ja aikaa

      Mies hakeutui Terveystalo Kamppiin flunssaoireiden takia helmikuisena sunnuntai-iltana. Diagnoosiksi kirjattiin influens
      Maailman menoa
      77
      1090
    4. Rakkaus ei iloitse vääryydestä vaan iloitsee yhdessä TOTUUDEN kanssa.

      Tajuatteko, että jotkut ihmiset pitävät siitä, kun toiset kaatuvat? He nauttivat siitä, kun toiset mokaavat tai käyttävä
      Idän uskonnot
      359
      998
    5. Koska olet rakastellut

      Kaivattusi kanssa viimeksi?
      Ikävä
      77
      933
    6. Anteeksi Pekka -vedätys

      Apuna Ry:n somessa levinnyt Anteeksi Pakka -kampanja saa aina vaan kummallisempia piirteitä. ”Mä pyydän anteeksi. Mä
      Maailman menoa
      53
      901
    7. Kumpi tästä

      Teidän tilanteesta teki vaikeaa? Sivusta
      Ikävä
      59
      850
    8. Kaikkia ei voi miellyttää

      Eikä ole tarviskaan. Hyvää huomenta ja mukavaa perjantaita. 😊❄️⚜️✌🏼❤️
      Ikävä
      228
      804
    9. Mikä on kaivattusi ärsyttävin piirre?

      Mun kaivattu on erittäin vastahakoinen puhumaan itsestä. Kääntää puheenaiheen aina muuhun kun hänestä tulee puhetta.
      Ikävä
      49
      776
    10. Päivi Ollila on tehnyt kunnallisvalituksen saadakseen pidettyä Tarja Pirkkalaisen virassa

      Kaupunginhallituksen puheenjohtaja Päivi Ollila on tehnyt kunnallisvalituksen kaupungin johtamisjärjestelyiden muutokses
      Haapavesi
      58
      728
    Aihe