Odemarkin kaavan laskeminen h:n suhteen

Hei,
Tarvisi saada Odemarkin kaava muutettua siten, että sillä voisi laskea kerrospaksuuden (h), kun lähtökantavuus(Ea) ja tavoitekantavuus(Ey) on tiedossa. Omat yhtälönratkaisu taitoni loppuivat kesken. Enkä saanut netistä löytyvillä ratkaisuohjelmilla tätä ratkaistua. Osaisiko ja viitsisikö joku auttaa?

Kaava: https://katu2020.info/2020/wp-content/uploads/2019/12/odemark-kantavuuskaava-2.png

Alkuperäisessä kaavassa 0,81 = n^2 = 0,9^2 ja 0,15 = a. Jos on helpompi ratkaista tuo yhtälö käyttäen noita vakioarvoja, se on ok.

Kiitos jo etu käteen avusta.

9

1403

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Siis h(E) = f(E, EY, EA), vai kuinka?

      Voi olla, että onnistuu vain numeerisesti ratkaisemalla.

      • Anonyymi

        Ainakaan wolframalphan solveri ei taipunut siihen. Texas instrumentsiin en jaksa ruveta näpyttelelmään. Tossa kaava kuitenkin atk-muodossa, jos joku haluaa yrittää.

        Ey=Ea/((1-(1/sqrt(1 0.81*(h/0.15)^2)))*(Ea/E) 1/sqrt(1 0.81*(h/0.15)^2*(E/Ea)^(2/3)))


      • Anonyymi
        Anonyymi kirjoitti:

        Ainakaan wolframalphan solveri ei taipunut siihen. Texas instrumentsiin en jaksa ruveta näpyttelelmään. Tossa kaava kuitenkin atk-muodossa, jos joku haluaa yrittää.

        Ey=Ea/((1-(1/sqrt(1 0.81*(h/0.15)^2)))*(Ea/E) 1/sqrt(1 0.81*(h/0.15)^2*(E/Ea)^(2/3)))

        Kun lausekkeeseen laitetaan numeroarvot symbolien E, Ea ja Ey paikalle, niin Wα laskee juuren numeroarvon. Esimerkiksi jos E = 200, Ea = 20 ja Ey = 50, niin h = 0,198, mikä lienee oikea arvo.

        Jos yritetään kokonaan analyyttistä ratkaisua, niin lausekkeista tulee näköjään niin pitkät, että symbolimatematiikkaohjelmistot helposti tukehtuvat normaaliasetuksillaan.

        Ratkaisu perustuu neljännen asteen yhtälön ratkaisukaavaan, joka tunnetusti on melkoisen pitkä.


    • Anonyymi

      Piti ihan kuukkeloida, mistä asiassa on todella kysymys. Ea, Ey ja E siis tunnetaan ja kaavasta pitäisi ratkaista h. Se käy helpoimmin, kun haarukoit kaavan oikealla puolella h:n arvoja siten, että yrität saada oikean puolen yhtäsuureksi kuin Ey.

      Käytännössä piirrät kaavan oikean puolen kuvaajan ja katsot, millä h:n arvolla se saa arvon Ey.

      Jos haluat opetella ratkaisuun jonkin yksinkertaisen numeerisen menetelmän, niin tutustu puolitusmenetelmään.

    • Anonyymi

      Näyttää yhtälölle saavan analyyttisenkin ratkaisun, mutta siitä tulee tavattoman pitkä. Kun vielä on kyse likiarvomenetelmästä, niin tuollaisessa ei ole paljon järkeä.

    • Anonyymi

      Näyttää sille saavan yksinkertaisemmankin analyyttisen likiarvoratkaisun. Ensiksi kehitetään oikea puoli pisteen h = 0 suhteen sarjaksi ja otetaan mukaan termit aina potenssiin h⁴ saakka. Näin saadaan toisen asteen yhtälö termin h² suhteen.

      En tarkastellut menettelyn tarkkuutta, mutta olettaisin pienillä h:n arvoilla sen olevan varsin hyvä.

      • Anonyymi

        Näyttää siltä että kommenteistasi ei taida olla aloittaja-kysyjälle paljonkaan hyötyä. Niistä saa vain tietää että olet muka löytänyt jonkin ratkaisun mutta et nyt sentään viitsi siitä tarkemmin kertoa! Arvokasta tietoa tosiaan?


      • Anonyymi
        Anonyymi kirjoitti:

        Näyttää siltä että kommenteistasi ei taida olla aloittaja-kysyjälle paljonkaan hyötyä. Niistä saa vain tietää että olet muka löytänyt jonkin ratkaisun mutta et nyt sentään viitsi siitä tarkemmin kertoa! Arvokasta tietoa tosiaan?

        Jos aloittaja ei ymmärrä menetelmän perusteita tai hänellä ei ole taitoa tai välineitä lausekkeita itse johtaa, on aivan turhaa esittää pitkiä tuloslausekkeita. Näin varsinkin, kun esitin tuolla aiemmin yksinkertaisen, toimivan graafisen ratkaisumenetelmän.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos aloittaja ei ymmärrä menetelmän perusteita tai hänellä ei ole taitoa tai välineitä lausekkeita itse johtaa, on aivan turhaa esittää pitkiä tuloslausekkeita. Näin varsinkin, kun esitin tuolla aiemmin yksinkertaisen, toimivan graafisen ratkaisumenetelmän.

        Kokeilin yllä annettuja numeroarvoja sarjakehitelmäratkaisuun, ja tulokseksi sain h ≈ 0,175, mikä on 11 prosenttia liian pieni arvo.

        Kokonaisuutena totean edelleen, että yhtälön analyyttisen ratkaisuun ei kannata hirveästi panostaa, koska koko kaava on jonkinlainen approksimaatio varsin epämääräisestä mitoitustehtävästä. Näin riittää, kun luotettavan ratkaisun saa mahdollisimman helpolla, esimerkiksi juuri numeerisella puolitusmenetelmällä.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Miksi et irrota otettasi

      Suhteeni?
      Ikävä
      104
      3414
    2. Koko ajan olet

      Senkin suhteen kiusannut. Halut on ihan mielettömät olleet jo pitkään
      Ikävä
      88
      3093
    3. Tykkään susta

      Elämäni loppuun asti. Olet niin suuresti siihen vaikuttanut. Tykkäsit tai et siitä
      Ikävä
      20
      1953
    4. Muutama syy

      Sille miksi IRL kohtaaminen on hänelle vaikeaa
      Ikävä
      69
      1916
    5. Onko kaikki hyvin, iso huoli sinusta

      Miten jakselet? Onko sattunut jotain ikävää. Naiselta
      Ikävä
      39
      1898
    6. Estitkö sä minut

      Oikeasti. Haluatko, että jätän sun ajattelemisen? :3
      Ikävä
      22
      1766
    7. Onko kaivatullasi

      Hyvä vai huono huumorintaju?
      Ikävä
      24
      1697
    8. Pettymys! Tähdet, tähdet -kisassa tämä erikoisjakso pois - Pistänyt artistit todella lujille!

      Tähdet, tähdet -kisa on edennyt genrestä toiseen. Mutta erästä monen toivomaa erikoisjaksoa ei tällä kaudella nähdä. Voi
      Tv-sarjat
      34
      1459
    9. Onko meillä

      Molemmilla nyt hyvät fiilikset😢ei ainakaan mulla mutta eteenpäin on mentävä😏ikävä on, kait se helpottaa ajan myötä. Ko
      Ikävä
      9
      1349
    10. Tiedätkö tykkääkö

      Kaivatustasi siinä mielessä joku muukin kuin sinä itse
      Ikävä
      48
      1337
    Aihe