Miten tämmöinen lasketaan?

Anonyymi-ap

Pyrstötähti lähestyy maapalloa pitkin rataa, jota voidaan tarkastelujakson aikana pitää suorana. Mittausten perusteella pyrstötähden sijainti valitussa koordinaatistossa oli eräänä hetkenä P(−1,−5,4) ja hiukan myöhemmin Q(0,−3,3.5). Maapallon keskipiste sijaitsee koordinaatiston origossa ja maan säteen lukuarvo on 1. Mittayksikkönä käytetään siis maapallon sädettä.

Miten läheltä maapallon pintaa pyrstötähti kulkee?

Miten tällänen ratkastais??

9

145

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      En osaa laskea tuollaisia, mutta herää kysymys voiko laskea kun ei tiedetä alkunopeutta pisteessä Q.
      Onko tuo tehtävä jostain kurssilta, eli ratkaistavissa?

    • Anonyymi

      Ensiksi sovitetaan suora pisteiden P ja Q kautta. Sitten lasketaan origon etäisyys suorasta.
      Helppoa kuin heinänteko.

    • Anonyymi

      Rata on suora R(t) =
      (1-t) ( -1, - 5, 4) + t (0, -3, 3.5) =
      (t-1, 2t - 5, - 0.5 t plus 4)
      Tark.
      R(0) = (-1,-5,4) ja R(1)= (0, - 3, 3.5)

      Laske nyt origon etäisyys tuosta suorasta. Esim. niin että se on R:n pituuden
      lR(t)l pienin arvo.

      • Anonyymi

        Jatkuu.

        Tuosta puuttui taas plus-merkki. P.o.: R(t) = (1-t) (-1,-5,4) plus t(0,-3, 3.5)

        Voit myös määrätä t:n niin, että vektori
        (0 - (-1) , - 3 - (-5), 3.5-4) = (1,2, - 1/2) on nkohtisuorassa vektoria R(t) vastaan.
        Kummallakin tavalla saadaan t = 52/21.
        Nyt lasket pituuden l R(52/21) l . Olkoon tämä pituus r(52/21). Pyrstötähden etäisyys maanpinnasta on lyhyimmillään r(52/21) - 1.


      • Anonyymi

        Yksinkertainen yhtälö on R(t)*R'(t)=0 missä * on pistetulo ja R'(t) on derivaatta parametrin t suhteen.


      • Anonyymi
        Anonyymi kirjoitti:

        Jatkuu.

        Tuosta puuttui taas plus-merkki. P.o.: R(t) = (1-t) (-1,-5,4) plus t(0,-3, 3.5)

        Voit myös määrätä t:n niin, että vektori
        (0 - (-1) , - 3 - (-5), 3.5-4) = (1,2, - 1/2) on nkohtisuorassa vektoria R(t) vastaan.
        Kummallakin tavalla saadaan t = 52/21.
        Nyt lasket pituuden l R(52/21) l . Olkoon tämä pituus r(52/21). Pyrstötähden etäisyys maanpinnasta on lyhyimmillään r(52/21) - 1.

        Jatkuu /2.
        (A, B) on vektoreitten A ja B sisätulo ("pistetulo")

        l R(t) l saa minimin samassa pisteessä t kuin l R(t) l^2
        d/dt l R(t) l^2 = d/dt (R(t) , R(t) ) = (R'(t) , R(t) ) + ( R(t) , R' (t)) = 2 (R'(t) , R(t) ) = 0
        R'(t) = (1,2, - 1/2)
        (R'(t) , R(t) ) = t-1 plus 4t - 10 plus t/4 - 2 = 5 1/4 t - 13 = 0
        t = 52/21

        Geometrisesti ajatellen R'(t) on R(t)-käyrän tangenttivektori ja koska R(t) on nyt suora on sen tangenttivektori suoran itsensä suuntainen. Maapallon keskipistettä (origo) lähinnä oleva suoran piste on se jossa tangenttivektori R'(t)on kohtisuorassa suoran paikkavektorisa R(t) vastaan eli (R'(t) , R(t) ) = 0


      • Anonyymi
        Anonyymi kirjoitti:

        Jatkuu /2.
        (A, B) on vektoreitten A ja B sisätulo ("pistetulo")

        l R(t) l saa minimin samassa pisteessä t kuin l R(t) l^2
        d/dt l R(t) l^2 = d/dt (R(t) , R(t) ) = (R'(t) , R(t) ) ( R(t) , R' (t)) = 2 (R'(t) , R(t) ) = 0
        R'(t) = (1,2, - 1/2)
        (R'(t) , R(t) ) = t-1 plus 4t - 10 plus t/4 - 2 = 5 1/4 t - 13 = 0
        t = 52/21

        Geometrisesti ajatellen R'(t) on R(t)-käyrän tangenttivektori ja koska R(t) on nyt suora on sen tangenttivektori suoran itsensä suuntainen. Maapallon keskipistettä (origo) lähinnä oleva suoran piste on se jossa tangenttivektori R'(t)on kohtisuorassa suoran paikkavektorisa R(t) vastaan eli (R'(t) , R(t) ) = 0

        Taas jäi yksi plussa pois. Saamari etteivät korjaa tätä vikaa!
        P.O. ... d/dt (R(t),R(t) ) = (R'(t) , R(t) ) plus (R(t), R'(t) ) ...


    • Anonyymi

      vektoreiden pistetulon avulla

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Miksi et irrota otettasi

      Suhteeni?
      Ikävä
      74
      3052
    2. Koko ajan olet

      Senkin suhteen kiusannut. Halut on ihan mielettömät olleet jo pitkään
      Ikävä
      71
      2921
    3. Muutama syy

      Sille miksi IRL kohtaaminen on hänelle vaikeaa
      Ikävä
      68
      1842
    4. Tykkään susta

      Elämäni loppuun asti. Olet niin suuresti siihen vaikuttanut. Tykkäsit tai et siitä
      Ikävä
      19
      1772
    5. Onko kaikki hyvin, iso huoli sinusta

      Miten jakselet? Onko sattunut jotain ikävää. Naiselta
      Ikävä
      27
      1681
    6. Onko kaivatullasi

      Hyvä vai huono huumorintaju?
      Ikävä
      24
      1667
    7. Estitkö sä minut

      Oikeasti. Haluatko, että jätän sun ajattelemisen? :3
      Ikävä
      20
      1640
    8. Tiedätkö tykkääkö

      Kaivatustasi siinä mielessä joku muukin kuin sinä itse
      Ikävä
      48
      1317
    9. Millainen meno

      Viikonloppuna? Mulla hirvee vitutus päällänsä. Onko muilla sama tunne??
      Ikävä
      38
      1293
    10. Onko meillä

      Molemmilla nyt hyvät fiilikset😢ei ainakaan mulla mutta eteenpäin on mentävä😏ikävä on, kait se helpottaa ajan myötä. Ko
      Ikävä
      9
      1289
    Aihe