Hei. Tietääkö joku, millainen kaava tämän tehtävän ratkaisemiseksi pitäisi muodostaa?
Tehtävänä on siis laskea pankkitilin saldo 4 vuoden kuluttua, kun vuoden alussa tilille talletetaan 2000 €. Talletuksesta maksetaan 1,5 % korkoa vuodessa, josta kuitenkin vähennetään aina 30 % vero.
Osaan ratkaista tehtävän ns vaikeamman kautta laskien jokaisen vuoden yksitellen, mutta millaisella kaavalla sen voisi laskea ilman, että tarvitsee laskea jokaista vuotta erikseen? Lasku olisi helppo, jos ei tarvitsisi ottaa huomioon veroa, mutta miten menetellä kun vero olisi otettava laskiessa huomioon? Kaipaan kovasti jonkun viisaamman apua.
Pankkitilin saldo 4 vuoden kuluttua?
13
588
Vastaukset
- Anonyymi
Ennenkuin vastaan enemmän niin rarkoitatko, että 1. vuoden alussa talletetaaan 2000 euroa joka sitten muhii tilillä 4 vuotta vai tarkoitatko, että kunkin nvuoden alussa talletetaan 2000 euroa eli talletetaan tuo summa neljänä vuonna?
- Anonyymi
No, lasken nyt kuitenkin.
!. vuodenn alussa talletetaan summa a. Korkoprosentti on p ja vero on v. Tehtävässäsi a = 2000, p = 0,015 ja v = 0,30. Olkoonn k = p(1-v).
1. vuoden (lopussa kasassa on a + pa - vpa = a( 1+k)
2. vuoden lopussa määrä on a( 1 + k) + a(1+k) p - a(1+k)p v = a(1+k) + a(1+k) (p - pv) =
a(1+k)(1+k) = a(1+k)^2.
n:nen vuoden lopussa määrä on a(1+k)^n. Eli ihan korkoa korolle, korko vain on k. Tehtävässäsi n=4.
Jos nyt joka vuodenn alussa talletetaan tuo a niin 2. vuonna talletettu on n - vuodenn lopussa a(1+k)^(n-1).
3. vuoden alussa talletetusta tulee a(1+k)^(n-2)
jne
n:nen vuoden alussa talletetusta tulee vuoden lopussa a(1+k)
Koko talletus onn siis n-vuoden lopussa
S(n)= a(1+k) + a(1+k)^2 +...+a(1+k)^n =
a(1+k) (1 + (1+k) +...+ (1+k)^(n-1)) =
a(1+k) ( (1+k)^n - 1) /k
Tod. 1. vuoden lopussa S(1) = a(1+k) kuten pitääkin.
Oletetaan, että S(n) = a(1+k) ((1+k)^n - 1)/k
S(n+1) = a(1+k) + (1+k) S(n) =
a(1+k) + a (1+k) ^2 ((1+k)^n - 1)/k =
a(1+k) ( 1 + (1+k) ((1+k)^n - 1) /k =
a(1+k) (k + (1+k)^(n+1) - (1+k)) / k = a(1+k) ((1+k)^(n+1) - 1) /k
MOT - Anonyymi
Anonyymi kirjoitti:
No, lasken nyt kuitenkin.
!. vuodenn alussa talletetaan summa a. Korkoprosentti on p ja vero on v. Tehtävässäsi a = 2000, p = 0,015 ja v = 0,30. Olkoonn k = p(1-v).
1. vuoden (lopussa kasassa on a pa - vpa = a( 1 k)
2. vuoden lopussa määrä on a( 1 k) a(1 k) p - a(1 k)p v = a(1 k) a(1 k) (p - pv) =
a(1 k)(1 k) = a(1 k)^2.
n:nen vuoden lopussa määrä on a(1 k)^n. Eli ihan korkoa korolle, korko vain on k. Tehtävässäsi n=4.
Jos nyt joka vuodenn alussa talletetaan tuo a niin 2. vuonna talletettu on n - vuodenn lopussa a(1 k)^(n-1).
3. vuoden alussa talletetusta tulee a(1 k)^(n-2)
jne
n:nen vuoden alussa talletetusta tulee vuoden lopussa a(1 k)
Koko talletus onn siis n-vuoden lopussa
S(n)= a(1 k) a(1 k)^2 ... a(1 k)^n =
a(1 k) (1 (1 k) ... (1 k)^(n-1)) =
a(1 k) ( (1 k)^n - 1) /k
Tod. 1. vuoden lopussa S(1) = a(1 k) kuten pitääkin.
Oletetaan, että S(n) = a(1 k) ((1 k)^n - 1)/k
S(n 1) = a(1 k) (1 k) S(n) =
a(1 k) a (1 k) ^2 ((1 k)^n - 1)/k =
a(1 k) ( 1 (1 k) ((1 k)^n - 1) /k =
a(1 k) (k (1 k)^(n 1) - (1 k)) / k = a(1 k) ((1 k)^(n 1) - 1) /k
MOTAnteeksi, mitä tarkoittaa k? Onko k=korko? Paljon asiaa. Jumituin tuohon alkuun että k=p(1-v) ja mitä tässä tarkoittaa v?
Ja kyllä, kyse on siitä että vain ensimmäisen vuoden alussa tilille talletetaan yhden ainoan kerran 2000€. Tämä tehtävä on eräästä vanhasta matematiikan yo kertauskirjasta, johon en löytänyt vastauksia mistään netistä. Vastaus siis toki löytyy kirjasta, mutta vaiheittaisia ratkaisuja en löydä mistään.
Tehtävä menee kirjassa näin:
Henkilö tallettaa vuoden alussa pankkiin 2000€ tilille, josta maksetaan 1,5 % korko. Korosta vähennetään 30 % vero, ja loput lisätään pääomaan. Näin menetellään neljän vuoden ajan. Kuinka suureksi talletus kasvaa?
En ole koulussa tällä hetkellä, joten en voi kysyä keltään opettajalta, enkä tunne henkilökohtaisesti ketään opettajaa. Olin lainannut matikan kirjan kirjastosta harjoitellakseni tulevaa mahdollista ammattikorkeakoulun koetta varten satunnaisia tehtäviä. - Anonyymi
Anonyymi kirjoitti:
Anteeksi, mitä tarkoittaa k? Onko k=korko? Paljon asiaa. Jumituin tuohon alkuun että k=p(1-v) ja mitä tässä tarkoittaa v?
Ja kyllä, kyse on siitä että vain ensimmäisen vuoden alussa tilille talletetaan yhden ainoan kerran 2000€. Tämä tehtävä on eräästä vanhasta matematiikan yo kertauskirjasta, johon en löytänyt vastauksia mistään netistä. Vastaus siis toki löytyy kirjasta, mutta vaiheittaisia ratkaisuja en löydä mistään.
Tehtävä menee kirjassa näin:
Henkilö tallettaa vuoden alussa pankkiin 2000€ tilille, josta maksetaan 1,5 % korko. Korosta vähennetään 30 % vero, ja loput lisätään pääomaan. Näin menetellään neljän vuoden ajan. Kuinka suureksi talletus kasvaa?
En ole koulussa tällä hetkellä, joten en voi kysyä keltään opettajalta, enkä tunne henkilökohtaisesti ketään opettajaa. Olin lainannut matikan kirjan kirjastosta harjoitellakseni tulevaa mahdollista ammattikorkeakoulun koetta varten satunnaisia tehtäviä.Olen siis aloittaja. Ja haluan omasta tahdostani ratkaista tai osata ymmärtää tehtävän, kyse ei ole mistään koulutehtävästä mikä pitäisi tehdä eikä myöskään oman elämän todellisesta pulmasta. Jää vain häiritsemään, kun ei ymmärrä.
Kiitos sinulle joka esittelit ratkaisun, vaikkakaan en täysin ymmärrä sitä mutta yritän vielä perehtyä. Ja jos vain pystyisit tai joku muu vielä vastaamaan tarkentaviin kysymyksiin. - Anonyymi
Anonyymi kirjoitti:
Olen siis aloittaja. Ja haluan omasta tahdostani ratkaista tai osata ymmärtää tehtävän, kyse ei ole mistään koulutehtävästä mikä pitäisi tehdä eikä myöskään oman elämän todellisesta pulmasta. Jää vain häiritsemään, kun ei ymmärrä.
Kiitos sinulle joka esittelit ratkaisun, vaikkakaan en täysin ymmärrä sitä mutta yritän vielä perehtyä. Ja jos vain pystyisit tai joku muu vielä vastaamaan tarkentaviin kysymyksiin.Kyllä minä kerroin selvästi, jopa omia numeroarvojasi käyttäen, mitä p, v ja k ovat.
p = korkoprosentti, sinulla 1,5 % = 0,015. v = veroprosentti, sinulla 30 % = 0,30.
k lasketaan kaavalla k = p(1-v). Tämä siksi että summasta a (= 2000) tulee korkoa määrä pa ja tästä menee veroa määrä v(pa) joten ntalletettavaksi tuosta korosta jää pa - vpa = (p - vp)a
= p(1-v) a = k a kun merkitään k = p(1-v) = 0,015*(1 - 0,30).
Jos tehtävän tulkinta on se, mitä sanoit, niin silloin se ensimmäinen laskuni käy tilanteeseen.
Minusta kyllä tuo "näin menetellään neljän vuoden ajan" viittaisi enemmänkin siihen että joka vuosi myös talletetaan tuo a = 2000.
Siinä jälkimmäisessä, tähän tulkintaan sopivassa , laskussa lasketaan yksinkertaisesti niin, että tuo 1. vuoden 2000 kasvaa korkoa ,verot aina vähentäen , 4 vuotta. Sen lisäksi tulee 2. vuoden alussa taas 2000 joka kasvaa korkoa, verot taas vähentäen, 3 vuotta. Jne.
Lopuksi nuo summat lasketaan yhteen. - Anonyymi
😋😋😋😋😋😋😋😋😋😋
😍 Nymfomaani -> https://l24.im/ecC7ux#kissagirl21
🔞💋❤️💋❤️💋🔞💋❤️💋❤️💋🔞
- Anonyymi
Se talletus kannattaa tehdä ensimmäistä vuotta edeltäneenä vuoden viimeinen päivä jotta se kasvaa korkoa ensimmäisen vuoden jokaisen kuukauden alimmalle saldolle.
Se lähdevero on 29% ei 30. Eli jos korko on 1,5, niin poistaa se suoraa korosta. Korko lisätään saldooon kerran vuodessa. - Anonyymi
Otit kai huomioon inflaation eli jokainen vuosi vähennät -21% kokonaissummasta?
- Anonyymi
Ei inflaatio vaikuta tuohon loppusaldoon. Se on numeerisesti se, minkä anonyymi/ 2023-09-05 08:55:16 laski.
Eri asia on, että tuon summan ostoarvo ei inflaation ntakia enää ole niin suuri kuin aiemmin olisi ollut.
- Anonyymi
Uskon että vastauksessa kuuluisi hyödyntää jollain tavalla eksponenttia tai logaritmiä, tehtävä kuuluu osioon joka käsittelee prosenttilaskuja, eksponentiaalista kasvua ja logaritmiä. Ilman veron vähennystä tehtävähän on todella helppo, silloin sen voisi laskea vain 2000*1,015^4. Mutta verotuksen kanssa en kaavaa osaa muodostaa.
- Anonyymi
Kyllä se on jo yllä muodostettu. Etkö osaa lukea?
- Anonyymi
Anonyymi kirjoitti:
Kyllä se on jo yllä muodostettu. Etkö osaa lukea?
Anteeksi, en lukenut aikaisempaa viestiäsi tarpeeksi huolellisesti. Kiitos kun jaksoit vastata, siitä oli iso apu.
-Aloittaja - Anonyymi
Anonyymi kirjoitti:
Anteeksi, en lukenut aikaisempaa viestiäsi tarpeeksi huolellisesti. Kiitos kun jaksoit vastata, siitä oli iso apu.
-AloittajaEipä kestä! Kiitos kun kelpasi.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 743062
- 742944
- 681852
Tykkään susta
Elämäni loppuun asti. Olet niin suuresti siihen vaikuttanut. Tykkäsit tai et siitä191772- 271681
- 241667
- 201640
- 481317
Onko meillä
Molemmilla nyt hyvät fiilikset😢ei ainakaan mulla mutta eteenpäin on mentävä😏ikävä on, kait se helpottaa ajan myötä. Ko91299Pettymys! Tähdet, tähdet -kisassa tämä erikoisjakso pois - Pistänyt artistit todella lujille!
Tähdet, tähdet -kisa on edennyt genrestä toiseen. Mutta erästä monen toivomaa erikoisjaksoa ei tällä kaudella nähdä. Voi311295