Gödelin 1. epätäydellisyyslause sanoo, että kun meillä on tietyt ehdot täyttävä formaali systeemi niin siellä on tosi lause jota ei siinä systeemissä voi todistaa.
Puuttumatta nyt siihen, miten lause voi olla tosi vaikka sillä ei ole todistusta kysyn nseuraavaa:
Oletetaan, että tuollaisen järjestemän aksioomien njoukko on A(1). On olemassa lause L(1) joka on tosi mutta ei seuraa A(1)-aksioomista. Lisätään tämä aksioomaksi jolloin saadaan uusi aksioomajoukko A(2).L(1) on tässä järjestelmässä todistettavissa, onhan se aksiooma. Nyt tässäkin A(2)-järjestelmässä on Gödelin mukaan tosi lause, L(2), joka ei ole A(2)-aksioomien avulla todistettavissa. Lisätään L(2) aksioomaksi jolloin saadaan aksioomajoukko A(3).
Menettelyä voidaan jatkaa loputtomasti. Onko siis niin, että tuollainen Gödelin tarkoittama järjestelmä sisältää itse asiassa numeroituvan määrän lauseita, mjotka ovat tosia mutta eivät ole todistettavissa. Lauseet L(i) , i = 1,2,... voidaan formuloida A(1)-järjestelmässä, mitään uuttahan ei sen mahdollisiin lauseisiin lisätty. Mutta yksikään lause L(i+1) eim ole todistettavissa A(i)-järjestelmässä eikä siis myöskään A(1):ssä.
Onko asia näin?
Gödelin 1. epätäydellisyyslause
5
268
Vastaukset
- Anonyymi
Aksioomajärjestelmän pitää olla sen verran suuri, että se kattaa kokonaislukuaritmetiikan vasta sitten Gödelin epätäydellisyyslause tulee kyseeseen.
Eli voidaan hyvin tuottaa aksiomaattisia järjestelmiä jotka ovat ristiriidattomia ja täydellisiä, kunhan järjestelmä on riittävän suppea (ja käytännössä hyödytön)- Anonyymi
Kirjoitin kyllä "tietyt ehdot täyttävä formaali systeemi". Tämä kyllä piti sisällään tuon aksioomajärjestelmän suuruuden. En vain halunnut kommentissani ruveta alkeista luennoimaan vaan oletin, että jos joku ymmärtää kommenttini, tajuaa myös tämän edelletyksen.
Kysymykseni oli, että onko tällaisessa järjestelmässä jopa numeroituva määrä ei-todistettavissa olevia lauseita.
- Anonyymi
Vastaus: kyllä se on noin.
- Anonyymi
Aloituksessani olisin voinut sanoa näinkin:
Oletetaan, että noita Gödelin tarkoittamia tosia lauseita on äärellinen määrä. Lisätään nämä alkuperäisen systeemin aksioomeilsi. Uudessa systeemissä ei siis olke enää tällaisia lauseita. Mutta tämä on Gödelin mukaan mahdotonta. Siis noita lauseita ei voi olla vain äärellinen määrä.
Mutta nyt siihen toiseen asiaan:
Mitä tarkoittaa, että lause on tosi vaikka sille ei ole todistusta?- Anonyymi
Jokainen lause on tosi tai epätosi.
Gödelin mukaan on tosia lauseita, joita ei voi todistaa todeksi lähtien systeemin aksioomista.
Eli niille ei ole todistusta kyseisen systeemin puitteissa. Et voi tietenkään systeemin puitteissa todistaa että jokin tietty lause olisi juuri sellainen että sitä ei voi todistaa.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
En voi jutella kanssasi
tietenkään, mutta täällä voin sanoa sinulle, että se sinun hiljaisuutesi ja herkkyytesi eivät ole heikkoutta. Ne ovat ih274487Trump ja Vance murskasivat ja nolasivat Zelenskyn tiedotusvälineiden edessä Valkoisessa talossa.
Jopa oli uskomaton tilaisuus Valkoisessa talossa. Zelensky jäi täydelliseksi lehdellä soittelijaksi suhteessa Trumpiin j4591327Kokoomus haluaa hoitaa flussat yksityisellä, jotta säästettäisiin rahaa ja aikaa
Mies hakeutui Terveystalo Kamppiin flunssaoireiden takia helmikuisena sunnuntai-iltana. Diagnoosiksi kirjattiin influens771070Rakkaus ei iloitse vääryydestä vaan iloitsee yhdessä TOTUUDEN kanssa.
Tajuatteko, että jotkut ihmiset pitävät siitä, kun toiset kaatuvat? He nauttivat siitä, kun toiset mokaavat tai käyttävä358981- 77893
Anteeksi Pekka -vedätys
Apuna Ry:n somessa levinnyt Anteeksi Pakka -kampanja saa aina vaan kummallisempia piirteitä. ”Mä pyydän anteeksi. Mä53891- 59820
- 228794
Päivi Ollila on tehnyt kunnallisvalituksen saadakseen pidettyä Tarja Pirkkalaisen virassa
Kaupunginhallituksen puheenjohtaja Päivi Ollila on tehnyt kunnallisvalituksen kaupungin johtamisjärjestelyiden muutokses57697Mikä on kaivattusi ärsyttävin piirre?
Mun kaivattu on erittäin vastahakoinen puhumaan itsestä. Kääntää puheenaiheen aina muuhun kun hänestä tulee puhetta.42689