Gödelin 1. epätäydellisyyslause

Anonyymi-ap

Gödelin 1. epätäydellisyyslause sanoo, että kun meillä on tietyt ehdot täyttävä formaali systeemi niin siellä on tosi lause jota ei siinä systeemissä voi todistaa.

Puuttumatta nyt siihen, miten lause voi olla tosi vaikka sillä ei ole todistusta kysyn nseuraavaa:

Oletetaan, että tuollaisen järjestemän aksioomien njoukko on A(1). On olemassa lause L(1) joka on tosi mutta ei seuraa A(1)-aksioomista. Lisätään tämä aksioomaksi jolloin saadaan uusi aksioomajoukko A(2).L(1) on tässä järjestelmässä todistettavissa, onhan se aksiooma. Nyt tässäkin A(2)-järjestelmässä on Gödelin mukaan tosi lause, L(2), joka ei ole A(2)-aksioomien avulla todistettavissa. Lisätään L(2) aksioomaksi jolloin saadaan aksioomajoukko A(3).

Menettelyä voidaan jatkaa loputtomasti. Onko siis niin, että tuollainen Gödelin tarkoittama järjestelmä sisältää itse asiassa numeroituvan määrän lauseita, mjotka ovat tosia mutta eivät ole todistettavissa. Lauseet L(i) , i = 1,2,... voidaan formuloida A(1)-järjestelmässä, mitään uuttahan ei sen mahdollisiin lauseisiin lisätty. Mutta yksikään lause L(i+1) eim ole todistettavissa A(i)-järjestelmässä eikä siis myöskään A(1):ssä.

Onko asia näin?

5

268

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Aksioomajärjestelmän pitää olla sen verran suuri, että se kattaa kokonaislukuaritmetiikan vasta sitten Gödelin epätäydellisyyslause tulee kyseeseen.
      Eli voidaan hyvin tuottaa aksiomaattisia järjestelmiä jotka ovat ristiriidattomia ja täydellisiä, kunhan järjestelmä on riittävän suppea (ja käytännössä hyödytön)

      • Anonyymi

        Kirjoitin kyllä "tietyt ehdot täyttävä formaali systeemi". Tämä kyllä piti sisällään tuon aksioomajärjestelmän suuruuden. En vain halunnut kommentissani ruveta alkeista luennoimaan vaan oletin, että jos joku ymmärtää kommenttini, tajuaa myös tämän edelletyksen.
        Kysymykseni oli, että onko tällaisessa järjestelmässä jopa numeroituva määrä ei-todistettavissa olevia lauseita.


    • Anonyymi

      Vastaus: kyllä se on noin.

    • Anonyymi

      Aloituksessani olisin voinut sanoa näinkin:
      Oletetaan, että noita Gödelin tarkoittamia tosia lauseita on äärellinen määrä. Lisätään nämä alkuperäisen systeemin aksioomeilsi. Uudessa systeemissä ei siis olke enää tällaisia lauseita. Mutta tämä on Gödelin mukaan mahdotonta. Siis noita lauseita ei voi olla vain äärellinen määrä.
      Mutta nyt siihen toiseen asiaan:
      Mitä tarkoittaa, että lause on tosi vaikka sille ei ole todistusta?

      • Anonyymi

        Jokainen lause on tosi tai epätosi.
        Gödelin mukaan on tosia lauseita, joita ei voi todistaa todeksi lähtien systeemin aksioomista.
        Eli niille ei ole todistusta kyseisen systeemin puitteissa. Et voi tietenkään systeemin puitteissa todistaa että jokin tietty lause olisi juuri sellainen että sitä ei voi todistaa.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. En voi jutella kanssasi

      tietenkään, mutta täällä voin sanoa sinulle, että se sinun hiljaisuutesi ja herkkyytesi eivät ole heikkoutta. Ne ovat ih
      Tunteet
      27
      4487
    2. Trump ja Vance murskasivat ja nolasivat Zelenskyn tiedotusvälineiden edessä Valkoisessa talossa.

      Jopa oli uskomaton tilaisuus Valkoisessa talossa. Zelensky jäi täydelliseksi lehdellä soittelijaksi suhteessa Trumpiin j
      Maailman menoa
      459
      1327
    3. Kokoomus haluaa hoitaa flussat yksityisellä, jotta säästettäisiin rahaa ja aikaa

      Mies hakeutui Terveystalo Kamppiin flunssaoireiden takia helmikuisena sunnuntai-iltana. Diagnoosiksi kirjattiin influens
      Maailman menoa
      77
      1070
    4. Rakkaus ei iloitse vääryydestä vaan iloitsee yhdessä TOTUUDEN kanssa.

      Tajuatteko, että jotkut ihmiset pitävät siitä, kun toiset kaatuvat? He nauttivat siitä, kun toiset mokaavat tai käyttävä
      Idän uskonnot
      358
      981
    5. Koska olet rakastellut

      Kaivattusi kanssa viimeksi?
      Ikävä
      77
      893
    6. Anteeksi Pekka -vedätys

      Apuna Ry:n somessa levinnyt Anteeksi Pakka -kampanja saa aina vaan kummallisempia piirteitä. ”Mä pyydän anteeksi. Mä
      Maailman menoa
      53
      891
    7. Kumpi tästä

      Teidän tilanteesta teki vaikeaa? Sivusta
      Ikävä
      59
      820
    8. Kaikkia ei voi miellyttää

      Eikä ole tarviskaan. Hyvää huomenta ja mukavaa perjantaita. 😊❄️⚜️✌🏼❤️
      Ikävä
      228
      794
    9. Päivi Ollila on tehnyt kunnallisvalituksen saadakseen pidettyä Tarja Pirkkalaisen virassa

      Kaupunginhallituksen puheenjohtaja Päivi Ollila on tehnyt kunnallisvalituksen kaupungin johtamisjärjestelyiden muutokses
      Haapavesi
      57
      697
    10. Mikä on kaivattusi ärsyttävin piirre?

      Mun kaivattu on erittäin vastahakoinen puhumaan itsestä. Kääntää puheenaiheen aina muuhun kun hänestä tulee puhetta.
      Ikävä
      42
      689
    Aihe