Kahden parittoman erisuuren kokonaisluvun neliöillä sama etäisyys kolmanteen parittoman

Anonyymi

luvun neliöön. Kaikissa kolmessa luvussa on oltava tekijöinä vain 4k 1 alkulukuja.

[1, 29, 41] 29^2 - 1^2 = 41^2 - 29^2 = 840
[17, 53, 73]
[41, 85, 113]
[17, 137, 193]
[5, 145, 205]
.
.
.
[249935004229, 249933004481, 249937003961]
[250001000005, 249998999993, 250003000001]
...

Mitä nämä kolmikot ovat nimeltään? Google ei löydä noita oeis.org:sta tai muualtakaan sarjana. (Ovat termeinä esim. 3x3 magic square of squares:ssa, jos joku joskus pystyy sellaisen löytämään.)

Saan muodostettua noita kolmikoita miljoonittain (ei kerrannaisia) yksinkertaisella lyhyellä Python-ohjelmalla.

4

138

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ei kaikille jonkin säännön toteuttaville luvuille tai lukujoukoille ole omaa vakiintunutta nimeä, kuten Pythagoraan kolmikot tai Mersennen alkuluvut.

      Jos aiot esimerkiksi kirjoittaa niistä jotain tai julkaista lukugeneraattorisi, voit yksinkertaisesti kutsua niitä säännön R toteuttaviksi lukukolmikoiksi tai R-kolmikoiksi, kunhan selität mitä tarkoitat säännöllä R.

      • Anonyymi

        Nyt kyse on paljon ja pitkään tutkituista matematiikan perusteista. Liittyy kyllä Pythagoraan hypotenuusiin ja kokonaislukujen neliöiden yleisiin ominaisuuksiin. Ihan kaikkia perusominaisuuksia ei tietysti löydetty ennen tietokoneita, joten sarjan "nimi" ei välttämättä ole tuttu historiasta.

        Ei siis varmasti mitään uutta kenellekään kokonaislukuja tutkiville matemaatikoille. Google ei tietysti löydä mitään, jos luvut esitetään sille jotenkin väärällä tavalla tai julkaisija on esittänyt ne jotenkin sanallisesti ja matemaattisia lausekkeita käyttäen.


    • Anonyymi

      Jos keskimmäinen luku on e ja pienin luku e-m ja suurin luku e n, niin n on aina 4:llä jaollinen ja e ja m on oltava:

      e ≡1 mod 12 tai e ≡5 mod 12
      m = n 16k (k = 1, 2, 3, ...)

      Jokaiselle n modulo 64 löytyy vain yksi sopiva m modulo 64. Siis vain 16 paria.

      Jostain ihmeen syystä luvuilla (e,m,n) ei ole yhtään yhteistä alkulukutekijää. Tuo on tietysti selvää 4k 3 alkuluvuille, mutta mikä pudotaa automaattisesti myös 4k 1 alkuluvut pois?

      Kokeilkaa itse ja ihmetelkää vasta sitten.

      • Anonyymi

        Luvuilla (e,m,n) löytyy tietysti 4k 1 yhteisä alkulukutekijöitä. Ei niitä mitenkään voi pudottaa pois. Hakukoodissani oli ehtolausekkeessa painovirhe, joka teki siitä aina epätoden.

        Neliöiden erotukset y ovat:

        y = (e n)^2-e^2 = e^2-(e-m)^2;

        Tuosta voidaan voidaan ratkaista e:

        e = (m-n)/2 n*m/(n-m)

        Jälkimmäisen termin on oltava kononaisluku. Rajoittaa n ja m arvoja.

        Jos halua ratkaista 3x3 Magic square of squaren (tai todistaa sen mahdottomaksi) kannattaa keskittyä löytämään eri kolmikoista yhtäsuuria y:n arvoja. Niitä pitäsi löytyä vähintään kolme. Erittäin harvinaista. Ja näitä kolmen ryhmiä (eri y:n arvoilla) pitäsi löytyä vähintään kolme. Sitten voi tarkistaa, ovatko ne sopivia.

        Lee Morgenstern on tutkinut noita neliöitä eniten ja kehittänyt teoriota laskennan nopeuttamiseksi. Nopeudesta tässäkin on vain lähinnä kysymys lukujen kasvaessa oikeasti suuriksi. Hänen viimeksi julkaisemassaan neliössä on vain toisen lävistäjän summa väärin.

        19720769947309², 6757561171393², 11290071470263²
        10987237357337², 9483582546853², 18745169816089²
        7239541562993², 20650330341071², 9120965347253²

        Oikeassa ratkaisussa luvut saattavat olla tuhansia tai miljoonia kertoja suurempia. Kannattaa siis keskittyä löytämään pienillä luvuilla erilaisia uusia rajoittavia ehtoja. Niitä on varmasti paljon löytämättä.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Nainen, yrittäessäsi olla vahva olet heikoksi tullut

      Tiedätkö mitä todellinen vahvuus on? Selviätkö, kun valtakunnat kukistuvat? Miten suojaudut kun menetät kaiken? :/
      Ikävä
      197
      1535
    2. Miettimisen aihetta.

      Kannattaa yrittää vain niitä oman tasoisia miehiä. Eli tiputa ittes maan pinnalle. Tiedoksi naiselle mieheltä.
      Ikävä
      123
      1288
    3. Mitkä on 3 viimeistä sanaa

      sun ja kaivattusi viesteilyssä? Ensin sun, sitten kaivatun?
      Ikävä
      52
      1042
    4. Kai sä näät

      Ku sua katson et olen aika rakastunut. Rakkaus ei vain ole aina niin yksinkertaista
      Ikävä
      72
      965
    5. Nainen miltä tuntuu olla ainoa nainen Suomessa, joka kelpaa ja on yheen sopiva minulle

      Sydämeni on kuin muuri, valtavat piikkimuurit, luottamusongelmat, ulkonäkövaatimukset, persoonavaatimukset ja älykkyysva
      Ikävä
      52
      873
    6. Hakeudu hoitoon.

      En oo kiinnostunut susta.
      Ikävä
      58
      873
    7. Mikä on ollut

      Epämiellyttävin hetki sinun ja kaivattusi romanssissa?
      Ikävä
      105
      855
    8. Just nyt mä

      En haluais sanoa sulle mitään. Voisi vaikka istua vierekkäin hiljaa. Ehkä nojaten toisiimme. Tai maata vierekkäin, ilman
      Ikävä
      53
      840
    9. Piristä mua ystävä

      Hyvä💫...
      Ikävä
      82
      820
    10. Sun ja kaivattusi

      ikäero? Kumpi vanhempi, m vai n?
      Ikävä
      42
      814
    Aihe