Montako ratkaisua kolmannen asteen yhtälöllä voi olla?

Anonyymi

Voiko kolmannen asteen yhtälöllä olla esimerkiksi vain ja ainoastaan kaksi ratkaisua?

26

803

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi
    • Anonyymi

      Eli siis voiko kolmannen asteen potenssiyhtälöllä olla VAIN 2 ratkaisua?
      Kyllä / Ei ?

      • Tämä ei ole kyllä/ei kysymys.


      • Anonyymi
        malaire kirjoitti:

        Tämä ei ole kyllä/ei kysymys.

        voiko kolmannen asteen potenssi yhtälöllä olla kaksi ratkaisua?


      • Anonyymi
        malaire kirjoitti:

        Tämä ei ole kyllä/ei kysymys.

        Jollain tietyllä yhtälöllä on tasan n ratkaisua.


    • Anonyymi

      Kolmannen asteen potenssiyhtälöllä voi olla kaksi ratkaisua.

      Oikein vai väärin?

      • Anonyymi

        Mietipä montako ratkaisua on yhtälöllä (x-a)(x-a)(x-b) = 0


    • Anonyymi

      Eikös tämä jo käsitelty aiemmin saman nimisessä ketjussa? Miksi ihmeessä taas kyselet?

      • Anonyymi

        Ei muista enää. Dementia vaivaa pahasti.


    • Anonyymi

      Aika hyvä kysymys sitten kuin kysyt että mikä on PI:n viimeinen desimaali

      • Anonyymi

        Pii-kantaisessa lukujärjestelmässä viimeinen piimaali on nolla.


    • Anonyymi

      Eikös tuo ole vähän kompa? Yhtälön asteluku kertoo, kuinka monta juurta yhtälöllä on. Näin ollen 3. asteen yhtälöllä on AINA 3 ratkaisua. Kaikki näistä ei välttämättä ole reaalisia - on siis mahdollista, että yhtälöllä on esim. 1 kompleksinen ja 2 reaaliratkaisua, tätäkö haettiin?

      • Anonyymi

        Väärin! Ei 3. asteen yhtälöllä voi olla kahta reaalista ratkaisua ja yhtä kompleksista. Yhtälöllä tässätarkoitetaan sellaista jonka kertoimet ovat reaaliset.
        Kts. esim. Wikipedia (engl.) : Cubic equation: Nature of the roots.


      • Anonyymi
        Anonyymi kirjoitti:

        Väärin! Ei 3. asteen yhtälöllä voi olla kahta reaalista ratkaisua ja yhtä kompleksista. Yhtälöllä tässätarkoitetaan sellaista jonka kertoimet ovat reaaliset.
        Kts. esim. Wikipedia (engl.) : Cubic equation: Nature of the roots.

        Tämä nähdään helposti, kun polynomi kirjoitetaan muodossa f(x) = a(x-b)(x-c)(x-d), missä b, cc ja d ovat nollakohdat ja a kolmannen asteen termin kerroin. Siten f(0) = -abcd, ja jos f(0) on reaalinen ja kaksi juurta (esim. c ja d) reaalisia, niin ab on reaalinen.

        Jos yksi juurista on aidosti kompleksinen ja kaksi reaalisia, on siis välttämätöntä, että polynomi on kompleksikertoiminen.

        Tuo siis on mahdollista kompleksikertoimisille kolmannen asteen polynomeille.


      • Anonyymi
        Anonyymi kirjoitti:

        Tämä nähdään helposti, kun polynomi kirjoitetaan muodossa f(x) = a(x-b)(x-c)(x-d), missä b, cc ja d ovat nollakohdat ja a kolmannen asteen termin kerroin. Siten f(0) = -abcd, ja jos f(0) on reaalinen ja kaksi juurta (esim. c ja d) reaalisia, niin ab on reaalinen.

        Jos yksi juurista on aidosti kompleksinen ja kaksi reaalisia, on siis välttämätöntä, että polynomi on kompleksikertoiminen.

        Tuo siis on mahdollista kompleksikertoimisille kolmannen asteen polynomeille.

        Yleisemmin reaalikertoimiselle polynomille näkee, että jos z on sen juuri, niin myös z:n kompleksikonjugaatti on juuri: Koska p(z) = 0, niin myös p(z):n konjugaatti on 0. Konjugointi menee summaan ja tuloon ja kertoimet eivät muutu, koska ovat reaalisia, joten saadaan, että p(z:n konjugaatti) = 0.


    • Anonyymi

      3 ratk

    • Anonyymi

      Mutta entäpä tällainen arvoitus: Kun kertoimia muutellaan, niin yleensähän juuret ovat erillisiä. Jos kuitenkin käy niin, että jossain vaiheessa kaksi juurta menee päällekkäin ja sitten eroavat, niin kumpi niistä on kumpi? Siis pisteet A ja B ovat ne juuret ja kun polynomin kertoimia jatkuvasti muutetaan jollain tavalla, niin ainahan pystytään sanomaan että tuossa menee nyt tuo A juuri ja tuossa B juuri, liikahtivat pikkuisen edellisestä olinpaikastaan. Tämä siis silloin kun ne ovat erilliset. Mutta sitten ne romahtavat yhteen. Ja lähtevät siitä taas erilleen. Kuinka sanotaan kumpi on kumpi kun ne eri suuntiin taas lähtevät???

      • Anonyymi

        Kumpi ja Kampi tappelivat. Kumpi voitti?


      • Anonyymi

        Säilyttävätkö suuntavektorinsa? Eli kun juuri muodostaa polun kun kertoimia varioidaan sileästi ja polun derivaatta voidaan olettaa nollasta eroavaksi kaikkialla.


    • Anonyymi

      Merkillistä miten tuota kommentointia riittää! Asia tuli ihan tyydyttävästi selvitetyksi jo toisessa saman nimisessä ketjussa. Ja tässäkin ketjussa jo aiemmin. Mutta kommentointeja vaan syntyy! Virheellisen vastauksen antanut otti selitysavukseen komleksikertoiset polynomit. Kas kun ei saman tien vielä yleisempää lukukuntaa!

      • Anonyymi

        P.o.: ...kompleksilukukertoimiset polynomit.


      • Anonyymi

        Ei polynomeilla ole mitään ratkaisuja oli kertomet mitä tahansa.
        Yhtälöillä voi olla ratkaisuja.


    • Anonyymi

      Jos luet tarkasti, sanoin vain, että "otti avukseen kompleksilukukertoimiset polynomit". En puhunut polynomien ratkaisuista mitään. Tosin näiden polynomien avulla sitten voidaan muodostaa yhtälöitä, esim. etsiä niiden nollakohtia.

      Taidat olla jo aika epätoivoinen kun puolustukseksesi vääristelet muiden kommentteja!

      • Anonyymi

        Taidat olla aika epätoivoinen kun huuhaajuttuja keksit puolustukseksesi.
        Aloituksessa todellakin puhuttiin yhtälöstä, ei polynomeista.


      • Anonyymi
        Anonyymi kirjoitti:

        Taidat olla aika epätoivoinen kun huuhaajuttuja keksit puolustukseksesi.
        Aloituksessa todellakin puhuttiin yhtälöstä, ei polynomeista.

        Et näy ymmärtävän suomea. Ei maha mittään.


    • Anonyymi

      Livahti mieleen vastaus kysymykseen mitä on 0/0 =ääretön tietysti mutta.

      Mikä olisi 9-asteisen yhtälön keskimmäisen yhtälön kolmannen objektiivin arvo?

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Nainen, yrittäessäsi olla vahva olet heikoksi tullut

      Tiedätkö mitä todellinen vahvuus on? Selviätkö, kun valtakunnat kukistuvat? Miten suojaudut kun menetät kaiken? :/
      Ikävä
      191
      1264
    2. Miettimisen aihetta.

      Kannattaa yrittää vain niitä oman tasoisia miehiä. Eli tiputa ittes maan pinnalle. Tiedoksi naiselle mieheltä.
      Ikävä
      122
      1118
    3. Mitkä on 3 viimeistä sanaa

      sun ja kaivattusi viesteilyssä? Ensin sun, sitten kaivatun?
      Ikävä
      48
      834
    4. Kai sä näät

      Ku sua katson et olen aika rakastunut. Rakkaus ei vain ole aina niin yksinkertaista
      Ikävä
      70
      830
    5. Just nyt mä

      En haluais sanoa sulle mitään. Voisi vaikka istua vierekkäin hiljaa. Ehkä nojaten toisiimme. Tai maata vierekkäin, ilman
      Ikävä
      53
      770
    6. Nainen miltä tuntuu olla ainoa nainen Suomessa, joka kelpaa ja on yheen sopiva minulle

      Sydämeni on kuin muuri, valtavat piikkimuurit, luottamusongelmat, ulkonäkövaatimukset, persoonavaatimukset ja älykkyysva
      Ikävä
      50
      705
    7. Kuinka hyvin tunnet mut?

      Kerro musta mies jotain.
      Ikävä
      33
      682
    8. Piristä mua ystävä

      Hyvä💫...
      Ikävä
      60
      669
    9. Nainen, mitä ajattelet minusta?

      Mitä tuntemuksia saan aikaan sinussa? :/
      Ikävä
      52
      647
    10. Hakeudu hoitoon.

      En oo kiinnostunut susta.
      Ikävä
      50
      645
    Aihe