Derivaattasovelluksia

Anonyymi

Suorakulmion muotoisen pelikentän pinta-alaksi halutaan 600 neliömetriä. Pelikenttä reunustetaan asfaltoimalla sivut kahden metrin leveydeltä ja päädyt kolmen metrin leveydeltä. Millä pelikentän mitoilla asfaltoitava alue on pienin?

Näyttää siltä ettei pitäisi olla vaikea, mutta jotakin en nyt tajua.

14

91

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      1. Oletko piirtänyt kuvan?
      2. Oletko merkinnyt jotain kentän mittaa muuttujalla?
      3. Ilmaissut muut mitat tämän avulla, tietoa kentän alasta apuna käyttäen.
      4. Saanut funktion reunuksen alalle valitun muuttujan suhteen jota sitten lähdetään minimoimaan.

    • Anonyymi

      Onko siis jokaisesta päätyrajan pisteestä oltava 3 m päällystettä kentältä ulospäin?

    • Anonyymi

      Valitse kentän pituudeksi 30 m ja leveydeksi 20 m. Asfaltoitava alue on 240 m2 oletaen, ettei nurkkia asfaltoida. Ei merkitystä, sillä nurkat ovat aina 4*2*3 = 24 m2.

      Jos x on kentän pituus, niin leveys on 600/x ja asfaltin pinta-ala on

      A = 2*x*2 2*(600/x)*3.

      Mikä on vaikeaa?

      • Anonyymi

        Mitenkähän pallinaama voit valita jotain semmosta, mitä kysytään? Tosiaankin liian vaikeaa tuommoselle.


      • Anonyymi

        Hahmottele A(x) kuvaaja. Toteat, että sillä on minimi. Minimin tarkan sijainnin saat selville määrittämällä A:n derivaatan dA/dx ja vaatimalla sen nollaksi.


      • Anonyymi
        Anonyymi kirjoitti:

        Hahmottele A(x) kuvaaja. Toteat, että sillä on minimi. Minimin tarkan sijainnin saat selville määrittämällä A:n derivaatan dA/dx ja vaatimalla sen nollaksi.

        Voi käyttää myös AM-GM epäyhtälöä

        4x 3600/x >= 2 * sqrt(4x*3600/x) = 2*120 = 240

        ja yhtäsuuruus saavutetaan kun 4x ja 3600/x yhtäsuuret eli x = 30.


      • Anonyymi
        Anonyymi kirjoitti:

        Mitenkähän pallinaama voit valita jotain semmosta, mitä kysytään? Tosiaankin liian vaikeaa tuommoselle.

        Jos ei osaa derivoida (tai edes muodostaa yhtälöä), niin kyllä ihan maalaisjärjelläkin löytää lähes minimin ihan vaan muutamalla kokeilulla. Aloittaa vaikka lähes neliöstä 25 m x 24 m.

        Ei ole myöskään kiellettyä hakea ensin vastauksen likiarvoa vaikka yhden rivin ohjelmapätkällä ja selvittää käppyrän kulkua ja jatkuvuuksia ja nollakohtien lukumääriä yms. Pituus on suurempi kuin leveys.

        for x in range(25,50): print(x, x*2*2 2*3*600.0/x)

        Aina oppii jotain, jos edes yrittää jotain. Aina voi tarkentaa.


      • Anonyymi
        Anonyymi kirjoitti:

        Mitenkähän pallinaama voit valita jotain semmosta, mitä kysytään? Tosiaankin liian vaikeaa tuommoselle.

        Niin, miten apina voi valita pelikentän mitat, kun niitä kysytään? Sitten vielä lerppahuulet törröllään kyselee, että mikä on vaikeata.


      • Anonyymi
        Anonyymi kirjoitti:

        Voi käyttää myös AM-GM epäyhtälöä

        4x 3600/x >= 2 * sqrt(4x*3600/x) = 2*120 = 240

        ja yhtäsuuruus saavutetaan kun 4x ja 3600/x yhtäsuuret eli x = 30.

        Ei ole pätevä lasku. Ei AM-GM - epäyhtälössä tuo yhtäsuuruus välttämättä anna pienintä arvoa. Tuon epäyhtälön vasemmalla ja oikealla puolella on kyllä tuolloin sama arvo, mutta ei se välttämättä ole pienin arvo jonka vasen puoli voi saada.


      • Anonyymi
        Anonyymi kirjoitti:

        Ei ole pätevä lasku. Ei AM-GM - epäyhtälössä tuo yhtäsuuruus välttämättä anna pienintä arvoa. Tuon epäyhtälön vasemmalla ja oikealla puolella on kyllä tuolloin sama arvo, mutta ei se välttämättä ole pienin arvo jonka vasen puoli voi saada.

        Kyllähän on, koska epäyhtälö on voimassa kaikilla arvoilla ja jos jollain arvolla on yhtäsuuruus niin tuo arvo on silloin minimikohta.

        Vielä selvemmin:

        f(x) >= 240 kaikilla x>0
        ja
        f(30) = 240.


      • Anonyymi
        Anonyymi kirjoitti:

        Kyllähän on, koska epäyhtälö on voimassa kaikilla arvoilla ja jos jollain arvolla on yhtäsuuruus niin tuo arvo on silloin minimikohta.

        Vielä selvemmin:

        f(x) >= 240 kaikilla x>0
        ja
        f(30) = 240.

        Niinpä. Tuo oikea puolihan ei enää riippunut x:stä.


      • Anonyymi
        Anonyymi kirjoitti:

        Niinpä. Tuo oikea puolihan ei enää riippunut x:stä.

        Derivoimatta pääsee myös huomaamalla, että yhtälöllä y = 4x 3600/x on ratkaisu ainoastaan, kun yhtälöllä 4x^2 - yx 3600 = 0 on ratkaisu. Toisen asteen ratkaisukaavan perusteella tämä tapahtuu vain, kun y^2-16*3600 >= 0. Pienin mahdollinen positiivinen y on siten sqrt(16*3600) = 240, jolloin oikea mitta saadaan yhtälön 4x^2 - 240x 3600 = 0 ratkaisuna (x = 30).

        Tietysti AM-GM on nopein ratkaisutapa, ja derivaatan sotkeminen tehtävään on tarpeetonta.


      • Anonyymi
        Anonyymi kirjoitti:

        Derivoimatta pääsee myös huomaamalla, että yhtälöllä y = 4x 3600/x on ratkaisu ainoastaan, kun yhtälöllä 4x^2 - yx 3600 = 0 on ratkaisu. Toisen asteen ratkaisukaavan perusteella tämä tapahtuu vain, kun y^2-16*3600 >= 0. Pienin mahdollinen positiivinen y on siten sqrt(16*3600) = 240, jolloin oikea mitta saadaan yhtälön 4x^2 - 240x 3600 = 0 ratkaisuna (x = 30).

        Tietysti AM-GM on nopein ratkaisutapa, ja derivaatan sotkeminen tehtävään on tarpeetonta.

        Olettaisin kyllä että tehtävä on annettu opiskelijalle nimenomaan harjoittamaan ääriarvojen löytämistä. Näin ollen tuo derivointi ei suinkaan ole "sotkemista" vaan melkoisen yleispätevä tapa löytää ääriarvoja. Ei sekään tietysti aina toimi.

        Sen sijaaan tuo epäyhtälön käyttö, niin nokkelaa kuin se tässä onkin, on erikoiskikka, joka ei kovin monasti sovellu funktion ääriarvojen löytämiseen.


    • Anonyymi

      Joskus oli sellainen tehtävä että miten shakkilaudalle asetellaan kuningattaria jotka eivät uhkaa toisiaan ne...

      Minä otin heti jo tietokoneen käyttöön ja grafiikkamuistin, piirsin ruudulle niitä kuningattarien tekemiä uhkausviivoja ja nopeasti ylivoimaisesti nopein ratkaisu kun käytin apuvälinettä eli tietokonetta ja niin vielä näytönohjaintakin :D

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Nainen, yrittäessäsi olla vahva olet heikoksi tullut

      Tiedätkö mitä todellinen vahvuus on? Selviätkö, kun valtakunnat kukistuvat? Miten suojaudut kun menetät kaiken? :/
      Ikävä
      191
      1284
    2. Miettimisen aihetta.

      Kannattaa yrittää vain niitä oman tasoisia miehiä. Eli tiputa ittes maan pinnalle. Tiedoksi naiselle mieheltä.
      Ikävä
      122
      1128
    3. Mitkä on 3 viimeistä sanaa

      sun ja kaivattusi viesteilyssä? Ensin sun, sitten kaivatun?
      Ikävä
      48
      854
    4. Kai sä näät

      Ku sua katson et olen aika rakastunut. Rakkaus ei vain ole aina niin yksinkertaista
      Ikävä
      70
      850
    5. Just nyt mä

      En haluais sanoa sulle mitään. Voisi vaikka istua vierekkäin hiljaa. Ehkä nojaten toisiimme. Tai maata vierekkäin, ilman
      Ikävä
      53
      780
    6. Nainen miltä tuntuu olla ainoa nainen Suomessa, joka kelpaa ja on yheen sopiva minulle

      Sydämeni on kuin muuri, valtavat piikkimuurit, luottamusongelmat, ulkonäkövaatimukset, persoonavaatimukset ja älykkyysva
      Ikävä
      50
      715
    7. Kuinka hyvin tunnet mut?

      Kerro musta mies jotain.
      Ikävä
      33
      682
    8. Piristä mua ystävä

      Hyvä💫...
      Ikävä
      60
      679
    9. Hakeudu hoitoon.

      En oo kiinnostunut susta.
      Ikävä
      50
      665
    10. Nainen, mitä ajattelet minusta?

      Mitä tuntemuksia saan aikaan sinussa? :/
      Ikävä
      52
      657
    Aihe