1. Selvitä kaikki funktion f(x)=x^2 integraalifunktiot, jotka sivuavat suoraa y=x. Mitkä ovat sivuamispisteiden koordinaatit?
- Tuon x^2 funktion integraalifunktio on tietysti x^3/3 C. Kuinka nuo sivuamispisteet pystyy selvittämään?
2. Suorakulmion kärkipisteet ovat origossa, positiivisella x-akselilla, y-akselilla ja käyrällä y=x^3. Kuinka iso osa suorakulmion alasta jää käyrän y=x^3
ja y-akselin väliin?
- Vaikka piirsin tämän, niin en millään hahmota, mikä on se määrätty väli, jonka pinta-ala täytyy laskea.
Osaisiko joku auttaa näissä eteenpäin? Laskut osan kyllä tehdä, kun vain saisi lausekkeen muodostettua.
Integraalitehtäviin apua?
5
107
Vastaukset
- Anonyymi
1. esim. x > 0 , y > 0 -kvadraatissa funktio kuten x ^ 3 käy äärettömään. Varmaan tässä tarkoitetaan, että se sivuaa suoraa y=x vain jos kyseinen funktio on aina suurempiarvoinen kuin y=x, mutta esiiintyy yhteinen piste tai useampi. Jos tutkitaan suoran sivuamista, voitaisiin käyttää myös sitä, että funktion derivaatan antama suora on yhteisessä pisteessä tämä suora. Mutta yleisessä tapauksessa kirjoitat yhtälöitä ja epäyhtälöitä, joista ratkaistaan C ja koordinaattipisteet.
2. Ei ole välttämättä yhtä määrättyä väliä. Kirjoita suorakulmion koordinaatit symbolein kuten (x,y) = (a, b). Koeta sitten tehdä tehtävä loppuun. - Anonyymi
1. Kun käyrä sivuaa toista jossain pisteessä, siinä niillä pitää olla sama derivaatta. Toinen käyristä on nyt suora, jolla on vakioderivaatta: 1. Joten kysytyn integraalifunktion derivaattafunktion, x^2, pitää saada sama arvo. Helposti nähdään, että tuo toteutuu kahdella x arvolla. Sitten vaan sovitetaan integraalifunktion C niin, että kulkee kyseisten pisteiden kautta.
- Anonyymi
2. Nähdään, että suorakulmion ala on x^4 ja myös integraalifunktiot ovat x^4 astetta. Siksi x arvosta riippumatta x^3 jakaa suorakulmion kahteen yhtä suureen osaan.
- Anonyymi
Siis jakaa kahteen osaan samassa suhteessa.
- Anonyymi
1. x^3/3 c = x ja x^2 = 1 (derivaatoilla sama arvo sivuamispisteissä)
Siis x = /- 1
1/3 c = 1 joten c = 2/3
- 1/3 c = - 1 joten c = - 2/3.
Kysytyt integraalifunktiot ovat siis
y(x) = x^3/3 2/3 ja y(x) = x^3/3 - 2/3.
2. x-akselilla olevan sivun pituus olkoon x. Suorakulmion korkeus on x^3.
Käyrän y = x^3 ja x-akselin väliin jää ala Int(0,x) t^3 dt = x^4/4. Koko suorakulmion ala on x*x^3 = x^4.,
(x^4 - x^4/4) / x^4 = 3/4.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Nainen, yrittäessäsi olla vahva olet heikoksi tullut
Tiedätkö mitä todellinen vahvuus on? Selviätkö, kun valtakunnat kukistuvat? Miten suojaudut kun menetät kaiken? :/1911264Miettimisen aihetta.
Kannattaa yrittää vain niitä oman tasoisia miehiä. Eli tiputa ittes maan pinnalle. Tiedoksi naiselle mieheltä.1221108- 70830
- 48824
Just nyt mä
En haluais sanoa sulle mitään. Voisi vaikka istua vierekkäin hiljaa. Ehkä nojaten toisiimme. Tai maata vierekkäin, ilman53770Nainen miltä tuntuu olla ainoa nainen Suomessa, joka kelpaa ja on yheen sopiva minulle
Sydämeni on kuin muuri, valtavat piikkimuurit, luottamusongelmat, ulkonäkövaatimukset, persoonavaatimukset ja älykkyysva50695- 33672
- 60659
- 52637
- 50635