Laske määrätty integraali x: 0->2 lausekkeesta sqrt(1-(1-x)^2).
Neliöjuurilausekkeen integraali
9
99
Vastaukset
- Anonyymi
(1-x)=sin(t), sijoituksella varmaan menee...
Mutta jos vähän funtsaa ensin sitä lauseketta, niin senhän saa muutettua muotoon: y^2 x^2-2x=0, ja edelleen:
(y-0)^2 (x-1)^2=1 , ja tuo on 1-säteinen puoliympyrä välillä 1...2, ja sen ala on tietysti pi/2.
Sillä sijoitusmenetelmällä pitäisi tuo nyt saada...- Anonyymi
korj. puoliympyrä välillä 0...2
- Anonyymi
Se ei menekään tuolla sijoituksella, tai menee mutta tulee -pi/2, joten sitten kokeilu sijoituksella : x-1=sin(t)...(kokeilen sitä vielä itsekin)
- Anonyymi
Tällä jälkimmäisellä kyllä menee, mutta hankala vähän on...
- Anonyymi
Tuolla sijoituksella uusiksi rajoiksi t:lle, laitoin: alaraja -pi/2......yläraja pi/2
- Anonyymi
Anonyymi kirjoitti:
Tuolla sijoituksella uusiksi rajoiksi t:lle, laitoin: alaraja -pi/2......yläraja pi/2
Tuossa ei taida olla kovinkaan suuria ongelmia, jos käyttää sijoitusta (1-x)=cos(u), jolloin integroitavaksi funktioksi tulee : sin^2(u), ja uusiksi rajoiksi : 0=>pi.
Tuossa integroinnissa voi käyttää osittaisintegrointia , tai cos(2u)=cos^2(u)-sin^2(u) kaavaa(helpompi).
(ps. Käytän tuossa muuttujaa u, koska muuttuja t viittaisi origokeskeiseen yksikköympyrään, mutta nythän ei sellaisessa olla.)
- Anonyymi
sin(t) = 1 - x.dx = - cos(t) dt
Int(pii/2,- pii/2) ( - sqrt(1-sin^2(t)) cos(t) dt) = (- pii/2, pii/2) cos^2(t) dt =
Sij(- pii/2, pii/2) (1/2 (sin(x) cos(x) x)) = pii/2- Anonyymi
Näytän nyt vielä miten tuo funktion cos^2(x) integraali saadaan.
Merkitään t = cos(x). dt = - sin(x) dx joten dx = - dt/sin(x) = - dt/sqrt(1-t^2)
Int (cos^2(x) dx) = - Int(t^2/sqrt(1-t^2) dt) = Int(t d(sqrt(1-t^2))dt) =
t sqrt(1-t^2) - Int((sqrt(1-t^2) dt) = cos(x) sin(x) Int(sqrt(1 -cos^2(x)) sin(x)) dx) =
sin(x) cos(x) Int(sin^2(x) dx) = sin(x) cos(x) Int((1-cos^2(x))dx) = sin(x) cos(x) x -Int(cos^2(x))dx) joten
2 Int(cos^2(x) dx) = x sin(x) cos(x) ja
Int(cos^2(x) dx) = 1/2(x sin(x) cos(x) ) = 1/2 (x sin(2x) / 2)
Tässä on käytetty integroimisvakion arvoa C = 0. Määrättyä integraalia laskettaessahan C:llä on sama arvo integroinnin ylä- ja alarajalla joten sen vaikutus häviää määrätyssä integraalissa. - Anonyymi
Anonyymi kirjoitti:
Näytän nyt vielä miten tuo funktion cos^2(x) integraali saadaan.
Merkitään t = cos(x). dt = - sin(x) dx joten dx = - dt/sin(x) = - dt/sqrt(1-t^2)
Int (cos^2(x) dx) = - Int(t^2/sqrt(1-t^2) dt) = Int(t d(sqrt(1-t^2))dt) =
t sqrt(1-t^2) - Int((sqrt(1-t^2) dt) = cos(x) sin(x) Int(sqrt(1 -cos^2(x)) sin(x)) dx) =
sin(x) cos(x) Int(sin^2(x) dx) = sin(x) cos(x) Int((1-cos^2(x))dx) = sin(x) cos(x) x -Int(cos^2(x))dx) joten
2 Int(cos^2(x) dx) = x sin(x) cos(x) ja
Int(cos^2(x) dx) = 1/2(x sin(x) cos(x) ) = 1/2 (x sin(2x) / 2)
Tässä on käytetty integroimisvakion arvoa C = 0. Määrättyä integraalia laskettaessahan C:llä on sama arvo integroinnin ylä- ja alarajalla joten sen vaikutus häviää määrätyssä integraalissa.Laskin tuon turhan monimutkaisesti. Näin se käy:
Int (cos^2(x) dx ) = Int (cos(x) dsin(x)) = cos(x ) sin(x) Int(sin^2(x) dx) = sin(x) cos(x)
Int((1 - cos^2(x))dx) = sin(x) cos(x) x - Int(cos^2(x) dx) joten
Int(cos ^2(x) dx) = 1/2 ( x sin(x) cos(x))
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Nainen, yrittäessäsi olla vahva olet heikoksi tullut
Tiedätkö mitä todellinen vahvuus on? Selviätkö, kun valtakunnat kukistuvat? Miten suojaudut kun menetät kaiken? :/1911264Miettimisen aihetta.
Kannattaa yrittää vain niitä oman tasoisia miehiä. Eli tiputa ittes maan pinnalle. Tiedoksi naiselle mieheltä.1221108- 70830
- 48824
Just nyt mä
En haluais sanoa sulle mitään. Voisi vaikka istua vierekkäin hiljaa. Ehkä nojaten toisiimme. Tai maata vierekkäin, ilman53770Nainen miltä tuntuu olla ainoa nainen Suomessa, joka kelpaa ja on yheen sopiva minulle
Sydämeni on kuin muuri, valtavat piikkimuurit, luottamusongelmat, ulkonäkövaatimukset, persoonavaatimukset ja älykkyysva50695- 33672
- 60659
- 52637
- 50635