diffis

maths

Osaako kukaan ratkaista tätä: y' sin x - y = 1 - cos x.

9

552

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      en osaa

    • Anonyymi

      Tuolloin vuonna 2006 ei vissiin vielä ollu Wolfram Alphaa!?!? Se osaa: vastaus on y = C*tan(x/2) x*tan(x/2).

      Mutta näinhän sen voi ratkaista: https://www.mathsisfun.com/calculus/differential-equations-first-order-linear.html

      Eli asetetaan y = uv ja u:lle saadaan kohdassa kolme yhtälö

      u' = u/sin(x)

      Mistä se muuten tulee, että tuo "v-termi" asetetaan nollaksi? Noh, joka tapauksessa tämä johtaa integraatioon

      int du/u = int dx/sin(x)

      Mikä ihme on 1/sinin integraali. En muista, noh WA muistaa ja se on log(tan(x/2)) eli juuri sopivasti toiselle puolelle tuleva eksponenttifunktio kumoaa logaritmin ja u=tan(x/2) ( C).
      Ja taianmaisesti (joku trig-kaava varmaan)
      (1/sin(x)-1/tan(x))/tan(x/2) = 1
      joten
      v = x C.
      Siinähän se ratkaisu sitten onkin.

      Tämähän oli itsellenikin hyvää kertausta! En muista olenko tuota y=uv metodia koskaan kuullutkaan.

      • Anonyymi

        "Mistä se muuten tulee, että tuo "v-termi" asetetaan nollaksi?"

        Kerroin v:n edessä on alkuperäisen (siistityn) yhtälön vasen puoli. Tarkoitus on ratkaista homogeeninen yhtälö vp. = 0. Lopullinen ratkaisu on jokin x:n funktio kertaa homogeenisen yhtälön
        y ' p (x) y = 0
        ratkaisu h(x). Tämä johtuu täysin h:n ominaisuuksista ja siitä, että u h ' p u h = 0, kun h on aina eksponentti ja integraali -muotoinen ja sen derivaatta on h' = p h.

        Ratkaisumenetelmän voi johtaa kahdessa eri järjestyksessä, joko tällä tavalla oudosti toteamalla kaksi edellistä identitettiä, kun oli arvannut ratkaista homogeenisen yhtälön. Tai alkuperäisemmin alkamalla etsiä h:hon liittyvää funktiota, jolla olisi ominaisuutena tehdä
        y' p(x) y lauseesta yksi derivaattatermi d (y * ? ) / dx (siksi h:n nimi on integraatiotekijä tms.).

        Vertaa näitä kahta johtoa yleiselle yhtälölle:

        https://en.wikipedia.org/wiki/Integrating_factor#Solving_first_order_linear_ordinary_differential_equations
        https://en.wikipedia.org/wiki/Method_of_variation_of_parameters#First-order_equation


      • Anonyymi

        Ei taikaa.
        sin(x) = sin(x/2 x/2) = sin(x/2) cos(x/2) cos(x/2) sin(x/2) = 2 sin(x/2) cos(x/2)
        cos(x) = cos(x/2 x/2) = cos^2(x/2) - sin^2(x/2) = 1 - 2 sin^2(x/2)

        1/sin(x) - 1/tan(x) = 1/sin(x) - cos(x)/sin(x) = 1/sin(x) (1 - cos(x)) = 1/(2 sin(x/2) cos(x/2)) *
        2 sin^2(x/2) = sin(x/2) / cos(x/2) = tan(x/2)


      • Anonyymi
        Anonyymi kirjoitti:

        Ei taikaa.
        sin(x) = sin(x/2 x/2) = sin(x/2) cos(x/2) cos(x/2) sin(x/2) = 2 sin(x/2) cos(x/2)
        cos(x) = cos(x/2 x/2) = cos^2(x/2) - sin^2(x/2) = 1 - 2 sin^2(x/2)

        1/sin(x) - 1/tan(x) = 1/sin(x) - cos(x)/sin(x) = 1/sin(x) (1 - cos(x)) = 1/(2 sin(x/2) cos(x/2)) *
        2 sin^2(x/2) = sin(x/2) / cos(x/2) = tan(x/2)

        Tuli 1. riville kirjoitusvirhe. p.o.:...= sin(x/2) cos(x/2) cos(x/2) sin(x/2) :...


      • Anonyymi

        Ei ole taikuutta eikä ihmettä tuossa integraalissakaan.Mitähän sinä matematiikasta opit jos lasketat W-A:lla valmiita vastauksia?
        dx /sin(x) = dx/(2 sin(x/2) cos(x/2)) =( dx/cos^2(x/2)) / (2 sin(x/2) / cos(x/2)) =( d tan(x/2)) / tan(x/2) = d (log(tan(x/2))) joten Int(dx/sin(x)) = log(tan(x/2)).


    • Anonyymi

      "du/u = int dx/sin(x)

      Mikä ihme on 1/sinin integraali. En muista, noh WA muistaa ja se on log(tan(x/2)) eli juuri sopivasti toiselle puolelle tuleva eksponenttifunktio kumoaa logaritmin ja u=tan(x/2) ( C)."

      Miksi tässäkin on jätetty käsittelemättä itseisarvoista tuleva toinen ratkaisu :
      u=-tan(x/2) C ?
      Siitä tuleva ratkaisu y: lle ei tosin toteuta alkuperäistä dif. yhtälöä, mutta ei sitä tässä vaiheessa voi vielä tietää..

      • Anonyymi

        Mulle tuli tuossa semmonen virhe, että se vakio C:hän tulee kertoimeksi, koska otetaan exp(). Sen takia ei siis tulekaan vakiota lopulliseen ratkaisuun, vaan siinä vain toinen vakio sulautuu kertoimena jo olemassaolevaan.


      • Anonyymi
        Anonyymi kirjoitti:

        Mulle tuli tuossa semmonen virhe, että se vakio C:hän tulee kertoimeksi, koska otetaan exp(). Sen takia ei siis tulekaan vakiota lopulliseen ratkaisuun, vaan siinä vain toinen vakio sulautuu kertoimena jo olemassaolevaan.

        Tuossa ensimmäisessä vaiheessa ei tule vakiota C ollenkaan, vaan se tulee vasta sitten kun v ratkaistaan, eli v=x C, ja y= uv, eli y=tan(x/2)(x C)


    Ketjusta on poistettu 5 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Nainen, yrittäessäsi olla vahva olet heikoksi tullut

      Tiedätkö mitä todellinen vahvuus on? Selviätkö, kun valtakunnat kukistuvat? Miten suojaudut kun menetät kaiken? :/
      Ikävä
      211
      1682
    2. Miettimisen aihetta.

      Kannattaa yrittää vain niitä oman tasoisia miehiä. Eli tiputa ittes maan pinnalle. Tiedoksi naiselle mieheltä.
      Ikävä
      141
      1435
    3. Mitkä on 3 viimeistä sanaa

      sun ja kaivattusi viesteilyssä? Ensin sun, sitten kaivatun?
      Ikävä
      54
      1163
    4. Sun ja kaivattusi

      ikäero? Kumpi vanhempi, m vai n?
      Ikävä
      64
      1142
    5. Kai sä näät

      Ku sua katson et olen aika rakastunut. Rakkaus ei vain ole aina niin yksinkertaista
      Ikävä
      74
      1045
    6. Nainen miltä tuntuu olla ainoa nainen Suomessa, joka kelpaa ja on yheen sopiva minulle

      Sydämeni on kuin muuri, valtavat piikkimuurit, luottamusongelmat, ulkonäkövaatimukset, persoonavaatimukset ja älykkyysva
      Ikävä
      55
      960
    7. Mikä on ollut

      Epämiellyttävin hetki sinun ja kaivattusi romanssissa?
      Ikävä
      107
      947
    8. Just nyt mä

      En haluais sanoa sulle mitään. Voisi vaikka istua vierekkäin hiljaa. Ehkä nojaten toisiimme. Tai maata vierekkäin, ilman
      Ikävä
      53
      870
    9. Piristä mua ystävä

      Hyvä💫...
      Ikävä
      82
      840
    10. Kesän odotuksia hyrynsalmella

      Kyllä kesällä hyrynsalmellakin on mahdollisuus osallistua kylän menoon monella tavalla . On kaunislehdon talomuseolla
      Hyrynsalmi
      6
      831
    Aihe