Apua todennäköisyyslaskennassa

Anonyymi

Olin miettimässä, että miten lasketaan todennäköisyys saada ensin pata ja sitten numero 6, jos kortteja ei palauteta pakkaan. Onko se vaan, että lasketaan tapahtumat yhteen, että muu pata x pata 6 muu pata x 6?

18

175

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      P(ensin pata) = 13/52
      P(sitten 6) =P(6 ja 1. kortti oli patakuutonen) P(6 ja 1.kortti ei ollut patakuutonen) =
      3/51 * 1/52 4/51 * 51/52 . Tässäon käytetty kaaavaa
      P(AB) = P(B) * P(A l B)
      Kysytty todennäköisyys on P(ensin pata) * P(sitten 6).

    • Anonyymi

      Tässä on siis kaksi eri tapausta, jotka ovat mahdollisia:

      Tapaus1: ensin pata6, sitten muu 6

      Tämän TN = 1/52 * 3/51

      Tapaus2: ensin muu pata kuin pata6, sitten mikä vaan 6 käy

      Tämän TN = 12/52 * 4/51

      Nämä kaksi tulosta yhteen, niin saadaan koko tapahtuman TN.

      • 1*3 12*4 = 51, siis todennäköisyys on 1/52 eli sama, jos kysyttäisiin suoraan onko vedetty kortti pata 6. Toisaalta vaikka kortti palautettaisiin olisi todennäköisyys myös 1/52. Tässä on jotain outoa.


      • Anonyymi
        okaro kirjoitti:

        1*3 12*4 = 51, siis todennäköisyys on 1/52 eli sama, jos kysyttäisiin suoraan onko vedetty kortti pata 6. Toisaalta vaikka kortti palautettaisiin olisi todennäköisyys myös 1/52. Tässä on jotain outoa.

        Tapahtumat "eka kortti on pata" ja "toka kortti on kutonen" ovat riippumattomat. Johtunee siitä, että jokaista numeroa on kussakin maassa saman verran (1). Näinhän se korttien valinta voidaan tehdä, kun korttia ei palauteta. Voidaan ajatella, että sekoitetusta pakasta otetaan kaksi päälimmäistä. Tai siis sillä ei ole väliä monetta korttia kummankin kysymykset suhteen tutkitaan ja voidaan itse asiassa tutkia molemmat kysymykset ekasta kortista eli kysytään onko se patakutonen.

        Jos taas kortti palautetaan, niin silloihan riippumattomuus on itsestäänselvää, joten myös siinä päädytään todennäköisyyteen 1/4 * 1/13 = 1/52.


      • Anonyymi
        Anonyymi kirjoitti:

        Tapahtumat "eka kortti on pata" ja "toka kortti on kutonen" ovat riippumattomat. Johtunee siitä, että jokaista numeroa on kussakin maassa saman verran (1). Näinhän se korttien valinta voidaan tehdä, kun korttia ei palauteta. Voidaan ajatella, että sekoitetusta pakasta otetaan kaksi päälimmäistä. Tai siis sillä ei ole väliä monetta korttia kummankin kysymykset suhteen tutkitaan ja voidaan itse asiassa tutkia molemmat kysymykset ekasta kortista eli kysytään onko se patakutonen.

        Jos taas kortti palautetaan, niin silloihan riippumattomuus on itsestäänselvää, joten myös siinä päädytään todennäköisyyteen 1/4 * 1/13 = 1/52.

        Eivät ne ole riippumattomat jos korttia ei palauteta.
        4/51 * 12/52 = P(2. kortti on 6 l 1. kortti oli muu pata kuin patakutonen) * P(1. kortti oli muu pata kuin patakutonen)
        3/51 * 1/52 = P(2. kortti on 6 l 1. kortti oli patakutonen)* P(1. kortti oli patakutonen)
        Kysytty tn = näiden summa = 1/52


      • Anonyymi
        Anonyymi kirjoitti:

        Eivät ne ole riippumattomat jos korttia ei palauteta.
        4/51 * 12/52 = P(2. kortti on 6 l 1. kortti oli muu pata kuin patakutonen) * P(1. kortti oli muu pata kuin patakutonen)
        3/51 * 1/52 = P(2. kortti on 6 l 1. kortti oli patakutonen)* P(1. kortti oli patakutonen)
        Kysytty tn = näiden summa = 1/52

        Tapahtumat on
        A = "eka kortti on pata"
        B = "toka kortti on kutonen"

        Riippumattomuudessa pitää olla
        P(B|A) = P (B)
        tai yhtäpitävästi
        P(B ja A) = P(A)*P(B)
        ja tämähän on juuri mitä tehtävässä laskettiin: 1/52 = 1/4 * 1/13.


      • Anonyymi
        Anonyymi kirjoitti:

        Tapahtumat on
        A = "eka kortti on pata"
        B = "toka kortti on kutonen"

        Riippumattomuudessa pitää olla
        P(B|A) = P (B)
        tai yhtäpitävästi
        P(B ja A) = P(A)*P(B)
        ja tämähän on juuri mitä tehtävässä laskettiin: 1/52 = 1/4 * 1/13.

        Tuo laskusi kuvaa tapausta että kortti palautetaan pakkaan. Tällöin tn saada 1. kerralla pata = 13/52 = 1/4. Tn nsaada toisella kerralla kutonen = 4/52 = 1/13. Koko tn non 1/52.

        Mutta jos korttia ei palauteta niin toisen noston tn riippuu siitä mitä 1. nostolla tapahtui. Sattumalta molemmissa tapauksissa koko tn = 1/52.

        Nähdään, että jos tapaukset A ja B ovat riippumattomia niin P(AB) = P(A)*P(B).
        Mutta jos P(AB) = P(A) * P(B) niin A ja B ei vät välttämättä ole riippumattomia!


      • Anonyymi
        Anonyymi kirjoitti:

        Tuo laskusi kuvaa tapausta että kortti palautetaan pakkaan. Tällöin tn saada 1. kerralla pata = 13/52 = 1/4. Tn nsaada toisella kerralla kutonen = 4/52 = 1/13. Koko tn non 1/52.

        Mutta jos korttia ei palauteta niin toisen noston tn riippuu siitä mitä 1. nostolla tapahtui. Sattumalta molemmissa tapauksissa koko tn = 1/52.

        Nähdään, että jos tapaukset A ja B ovat riippumattomia niin P(AB) = P(A)*P(B).
        Mutta jos P(AB) = P(A) * P(B) niin A ja B ei vät välttämättä ole riippumattomia!

        Kertaapas tapahtumien riippumattomuuden määritelmä: https://fi.wikipedia.org/wiki/Tapahtumien_riippuvuus#Riippumattomuus


      • Anonyymi
        Anonyymi kirjoitti:

        Kertaapas tapahtumien riippumattomuuden määritelmä: https://fi.wikipedia.org/wiki/Tapahtumien_riippuvuus#Riippumattomuus

        Sinä et taida ymmärtää mitä logiikassa implikaatio tarkoittaa. Jos A -> B niin ei välttämättä B -> A.
        Tapahtumat A ja B riippumattomia -> P(AB) = P(A) * P(B).
        Mutta P(AB) = P(A) * P(B) ei välttämättä implikoi riippumattomuutta.


      • Anonyymi
        Anonyymi kirjoitti:

        Sinä et taida ymmärtää mitä logiikassa implikaatio tarkoittaa. Jos A -> B niin ei välttämättä B -> A.
        Tapahtumat A ja B riippumattomia -> P(AB) = P(A) * P(B).
        Mutta P(AB) = P(A) * P(B) ei välttämättä implikoi riippumattomuutta.

        Jos nyt kuitenkin tarkastaisit sen riippumattomuuden määritelmän. Tai eihän siinä taida auttaa muu kuin minun nyt kysyä sinulta, että mikä se määritelmä sinun mielestäsi on, niin alat sitä uusin silmin etsiskelemään ja tarkemmin miettimään.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos nyt kuitenkin tarkastaisit sen riippumattomuuden määritelmän. Tai eihän siinä taida auttaa muu kuin minun nyt kysyä sinulta, että mikä se määritelmä sinun mielestäsi on, niin alat sitä uusin silmin etsiskelemään ja tarkemmin miettimään.

        Selitän nyt näin: Alunperin todennäköisyysavaruus muodostuu 52 kortista, Kun otetaan yksi ja pannaan se takaisin on toisen noston tnavaruus sama kuin 1. kerralla.

        Kun A ja B ovat riippumattomia niin P(AB) = P(A) * P(B). Mutta A:n ja B:n tulee olla saman tnavaruuden osajoukkoja. Ja jos 1, kortti palautetaan niin A on patojen joukko ja B on kutosten joukko. Ne ovat saman 52 alkion osajoukkoja.

        Mutta jos 1. korttia ei palauteta 2. noston tn-avaruus ei ole sama kuinn 1. noston tn-avaruus. Siinä on kaikkiaan vain 51 korttia ja se vielä riippuu siitä, mikä kortti 1. nostolla tuli. Nyt kaavaa P(AB) = P(A) * P(B) ei voi käyttää.

        Tässä tehtävässä vain nyt sattuu tulemaan sama tulos laski sitten ilman npalauttamista tai palauttaen.


      • Anonyymi
        Anonyymi kirjoitti:

        Selitän nyt näin: Alunperin todennäköisyysavaruus muodostuu 52 kortista, Kun otetaan yksi ja pannaan se takaisin on toisen noston tnavaruus sama kuin 1. kerralla.

        Kun A ja B ovat riippumattomia niin P(AB) = P(A) * P(B). Mutta A:n ja B:n tulee olla saman tnavaruuden osajoukkoja. Ja jos 1, kortti palautetaan niin A on patojen joukko ja B on kutosten joukko. Ne ovat saman 52 alkion osajoukkoja.

        Mutta jos 1. korttia ei palauteta 2. noston tn-avaruus ei ole sama kuinn 1. noston tn-avaruus. Siinä on kaikkiaan vain 51 korttia ja se vielä riippuu siitä, mikä kortti 1. nostolla tuli. Nyt kaavaa P(AB) = P(A) * P(B) ei voi käyttää.

        Tässä tehtävässä vain nyt sattuu tulemaan sama tulos laski sitten ilman npalauttamista tai palauttaen.

        Todennäköisyysavaruudeksi voidaan ottaa kaikki kahden kortin nostot pakasta. Sen koko on 52*51. Jokainen pari on yhtä todennäköinen.
        Siis X = {(c1, c2) | c1!=c2}.
        Nyt
        A = { (c1, c2) € X | c1 on pata}
        B = { (c1, c2) € X | c2 on kutonen }.


      • Anonyymi
        Anonyymi kirjoitti:

        Sinä et taida ymmärtää mitä logiikassa implikaatio tarkoittaa. Jos A -> B niin ei välttämättä B -> A.
        Tapahtumat A ja B riippumattomia -> P(AB) = P(A) * P(B).
        Mutta P(AB) = P(A) * P(B) ei välttämättä implikoi riippumattomuutta.

        Sanoin tuon väärin.
        Jos A ja B ovat saman tnavaruuden X osajoukkojaja joiden todennäköisyydet =/ 0 niin A on nriippumaton B:stä jos P(A l B) = P(A). Tällöin
        P(A l B) = P(AB) / P(B) = P(A) => P(AB) = P(A)*P(B)
        Jos taas pätee P(AB) = P(A) * P(B) niin P(Al B) = P(AB) / P(B) = (P(A) * P(B)) / P)B) = P(A) joten A on riippumaton B:stä .
        Lisäksi on P(B l A) = P(AB) / P(A) = P(B) joten myös B on riippumatonn A:sta.


    • Anonyymi

      Tapauksia jolloin -1. kortti on pata ja toinen on 6 = tapauksia joissa 1. kortti on muu pata kuin pata 6 ja toinen kortti on 6 1.kortti on pata 6 ja toinen kortti on muu 6 kuin pata 6 =
      12*4 1*3 = 51
      Kaikkiaan 2 korttia 52:sta voidaan nostaa C(52,2) = 52! / (2! * 50!) tavalla.
      Kysytty tn = 51/C(52,2) = 51*2*50! / 52! = 1/26

      • Anonyymi

        "Kaikkiaanissa" korteilla on järjestys: 1. kortti ja 2. kortti, joten sen pitäisi olla 52*51.


      • Anonyymi
        Anonyymi kirjoitti:

        "Kaikkiaanissa" korteilla on järjestys: 1. kortti ja 2. kortti, joten sen pitäisi olla 52*51.

        Olet oikeassa. Ja tuo suotuisten tapausten määrä voidaan laskea myös näin: 13*3 12*1 = 51.
        Kaikkiaan mahdollisuuksia ottaa nuo kaksi korttia on 52*51. Kysytty tn = 1/52.


      • Anonyymi
        Anonyymi kirjoitti:

        Olet oikeassa. Ja tuo suotuisten tapausten määrä voidaan laskea myös näin: 13*3 12*1 = 51.
        Kaikkiaan mahdollisuuksia ottaa nuo kaksi korttia on 52*51. Kysytty tn = 1/52.

        Tämä on apina väärä vastaus.


    • Anonyymi

      Noin 2%: 1/52 (1/4 ja 1/13).

    Ketjusta on poistettu 2 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Nainen, yrittäessäsi olla vahva olet heikoksi tullut

      Tiedätkö mitä todellinen vahvuus on? Selviätkö, kun valtakunnat kukistuvat? Miten suojaudut kun menetät kaiken? :/
      Ikävä
      199
      1590
    2. Miettimisen aihetta.

      Kannattaa yrittää vain niitä oman tasoisia miehiä. Eli tiputa ittes maan pinnalle. Tiedoksi naiselle mieheltä.
      Ikävä
      138
      1354
    3. Mitkä on 3 viimeistä sanaa

      sun ja kaivattusi viesteilyssä? Ensin sun, sitten kaivatun?
      Ikävä
      54
      1123
    4. Kai sä näät

      Ku sua katson et olen aika rakastunut. Rakkaus ei vain ole aina niin yksinkertaista
      Ikävä
      72
      995
    5. Sun ja kaivattusi

      ikäero? Kumpi vanhempi, m vai n?
      Ikävä
      51
      950
    6. Mikä on ollut

      Epämiellyttävin hetki sinun ja kaivattusi romanssissa?
      Ikävä
      106
      902
    7. Nainen miltä tuntuu olla ainoa nainen Suomessa, joka kelpaa ja on yheen sopiva minulle

      Sydämeni on kuin muuri, valtavat piikkimuurit, luottamusongelmat, ulkonäkövaatimukset, persoonavaatimukset ja älykkyysva
      Ikävä
      52
      893
    8. Just nyt mä

      En haluais sanoa sulle mitään. Voisi vaikka istua vierekkäin hiljaa. Ehkä nojaten toisiimme. Tai maata vierekkäin, ilman
      Ikävä
      53
      850
    9. Piristä mua ystävä

      Hyvä💫...
      Ikävä
      82
      830
    10. Kuinka hyvin tunnet mut?

      Kerro musta mies jotain.
      Ikävä
      31
      764
    Aihe